SymDiff: Equivariant Diffusion via Stochastic Symmetrisation
- URL: http://arxiv.org/abs/2410.06262v1
- Date: Tue, 8 Oct 2024 18:02:29 GMT
- Title: SymDiff: Equivariant Diffusion via Stochastic Symmetrisation
- Authors: Leo Zhang, Kianoosh Ashouritaklimi, Yee Whye Teh, Rob Cornish,
- Abstract summary: We propose a novel method for constructing equivariant diffusion models using the recently introduced framework of symmetrisation.
SymDiff resembles a learned data augmentation that is deployed at sampling time, and is lightweight, computationally efficient, and easy to implement on top of arbitrary off-the-shelf models.
We show that this is the first application of symmetrisation to generative modelling, suggesting its potential in this domain more generally.
- Score: 28.614292092399563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose SymDiff, a novel method for constructing equivariant diffusion models using the recently introduced framework of stochastic symmetrisation. SymDiff resembles a learned data augmentation that is deployed at sampling time, and is lightweight, computationally efficient, and easy to implement on top of arbitrary off-the-shelf models. Notably, in contrast to previous work, SymDiff typically does not require any neural network components that are intrinsically equivariant, avoiding the need for complex parameterizations and the use of higher-order geometric features. Instead, our method can leverage highly scalable modern architectures as drop-in replacements for these more constrained alternatives. We show that this additional flexibility yields significant empirical benefit on $\mathrm{E}(3)$-equivariant molecular generation. To the best of our knowledge, this is the first application of symmetrisation to generative modelling, suggesting its potential in this domain more generally.
Related papers
- Equivariant score-based generative models provably learn distributions with symmetries efficiently [7.90752151686317]
Empirical studies have demonstrated that incorporating symmetries into generative models can provide better generalization and sampling efficiency.
We provide the first theoretical analysis and guarantees of score-based generative models (SGMs) for learning distributions that are invariant with respect to some group symmetry.
arXiv Detail & Related papers (2024-10-02T05:14:28Z) - Approximately Equivariant Neural Processes [47.14384085714576]
When modelling real-world data, learning problems are often not exactly equivariant, but only approximately.
Current approaches to achieving this cannot usually be applied out-of-the-box to any architecture and symmetry group.
We develop a general approach to achieving this using existing equivariant architectures.
arXiv Detail & Related papers (2024-06-19T12:17:14Z) - A Generative Model of Symmetry Transformations [44.87295754993983]
We build a generative model that explicitly aims to capture the data's approximate symmetries.
We empirically demonstrate its ability to capture symmetries under affine and color transformations.
arXiv Detail & Related papers (2024-03-04T11:32:18Z) - Symmetry Breaking and Equivariant Neural Networks [17.740760773905986]
We introduce a novel notion of'relaxed equiinjection'
We show how to incorporate this relaxation into equivariant multilayer perceptronrons (E-MLPs)
The relevance of symmetry breaking is then discussed in various application domains.
arXiv Detail & Related papers (2023-12-14T15:06:48Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Learning Probabilistic Symmetrization for Architecture Agnostic Equivariance [16.49488981364657]
We present a novel framework to overcome the limitations of equivariant architectures in learning functions with group symmetries.
We use an arbitrary base model such as anvariant or a transformer and symmetrize it to be equivariant to the given group.
Empirical tests show competitive results against tailored equivariant architectures.
arXiv Detail & Related papers (2023-06-05T13:40:54Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
We introduce a flexible framework relying on frameaveraging (SFA) to make any model E(3)-equivariant or invariant through data transformations.
We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling.
arXiv Detail & Related papers (2023-04-28T21:48:31Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Oracle-Preserving Latent Flows [58.720142291102135]
We develop a methodology for the simultaneous discovery of multiple nontrivial continuous symmetries across an entire labelled dataset.
The symmetry transformations and the corresponding generators are modeled with fully connected neural networks trained with a specially constructed loss function.
The two new elements in this work are the use of a reduced-dimensionality latent space and the generalization to transformations invariant with respect to high-dimensional oracles.
arXiv Detail & Related papers (2023-02-02T00:13:32Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
We show that learning a small neural network to perform canonicalization is better than using predefineds.
Our experiments show that learning the canonicalization function is competitive with existing techniques for learning equivariant functions across many tasks.
arXiv Detail & Related papers (2022-11-11T21:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.