論文の概要: The Mystery of Compositional Generalization in Graph-based Generative Commonsense Reasoning
- arxiv url: http://arxiv.org/abs/2410.06272v1
- Date: Tue, 8 Oct 2024 18:14:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 10:11:01.991716
- Title: The Mystery of Compositional Generalization in Graph-based Generative Commonsense Reasoning
- Title(参考訳): グラフに基づく生成コモンセンス推論における構成一般化の謎
- Authors: Xiyan Fu, Anette Frank,
- Abstract要約: グラフベースのCommonsense Reasoning(CGGC)のための合成一般化チャレンジを紹介する。
与えられた概念とそれに対応する推論グラフに基づいて自然な文を生成するモデルが必要である。
我々は、文脈内学習を用いて7つのよく知られたLLMを評価し、パフォーマンスの高いLLMが構成一般化に苦戦していることを発見した。
- 参考スコア(独自算出の注目度): 24.683598294766774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While LLMs have emerged as performant architectures for reasoning tasks, their compositional generalization capabilities have been questioned. In this work, we introduce a Compositional Generalization Challenge for Graph-based Commonsense Reasoning (CGGC) that goes beyond previous evaluations that are based on sequences or tree structures - and instead involves a reasoning graph: It requires models to generate a natural sentence based on given concepts and a corresponding reasoning graph, where the presented graph involves a previously unseen combination of relation types. To master this challenge, models need to learn how to reason over relation tupels within the graph, and how to compose them when conceptualizing a verbalization. We evaluate seven well-known LLMs using in-context learning and find that performant LLMs still struggle in compositional generalization. We investigate potential causes of this gap by analyzing the structures of reasoning graphs, and find that different structures present varying levels of difficulty for compositional generalization. Arranging the order of demonstrations according to the structures' difficulty shows that organizing samples in an easy-to-hard schema enhances the compositional generalization ability of LLMs.
- Abstract(参考訳): LLMはタスク推論のためのパフォーマンスアーキテクチャとして登場したが、それらの合成一般化能力は疑問視されている。
本稿では,グラフに基づくコモンセンス推論(CGGC)のための合成一般化チャレンジを紹介する。これはシーケンスやツリー構造に基づく過去の評価を超越し,推論グラフを含むものだ。
この課題をマスターするには、モデルがグラフ内の関係的なタペルの推論方法と、言語化を概念化する際の構成方法を学ぶ必要がある。
我々は、文脈内学習を用いて7つのよく知られたLLMを評価し、パフォーマンスの高いLLMが構成一般化に苦戦していることを発見した。
推論グラフの構造を解析することにより,このギャップの潜在的な原因を解明し,様々な構造が構成一般化の難易度に変化があることを見出した。
構造物の難易度に応じて実演の順序をアレンジすると, サンプルの整理がLLMの構成一般化能力を高めることが示される。
関連論文リスト
- Can LLM Graph Reasoning Generalize beyond Pattern Memorization? [46.93972334344908]
我々は,大規模言語モデル (LLM) が,合成学習データにおける意味的,数値的,構造的,推論パターンを超えうるか否かを評価し,実世界のグラフベースタスクにおける有用性を向上させる。
トレーニング後のアライメントが現実世界のタスクに最も有望であるのに対して、LLMグラフの推論をパターンを超えて行うことは、依然としてオープンな研究課題である。
論文 参考訳(メタデータ) (2024-06-23T02:59:15Z) - What makes Models Compositional? A Theoretical View: With Supplement [60.284698521569936]
本稿では,構成関数の一般神経-記号的定義とその構成複雑性について述べる。
既存の汎用および特殊目的のシーケンス処理モデルがこの定義にどのように適合しているかを示し、それらを用いて構成複雑性を分析する。
論文 参考訳(メタデータ) (2024-05-02T20:10:27Z) - Can Graph Descriptive Order Affect Solving Graph Problems with LLMs? [38.1577036285387]
大規模言語モデル(LLM)は、数学的推論や論理的推論を含む推論タスクにおいて大きな成功を収めた。
従来の研究は様々な手法を用いてLSMのグラフ推論能力について研究してきた。
重要な要素は、主に見過ごされ、グラフ記述がモデルに提示される即時順序である。
論文 参考訳(メタデータ) (2024-02-11T09:46:24Z) - Query Structure Modeling for Inductive Logical Reasoning Over Knowledge
Graphs [67.043747188954]
KGに対する帰納的論理的推論のための構造モデル付きテキスト符号化フレームワークを提案する。
線形化されたクエリ構造とエンティティを、事前訓練された言語モデルを使ってエンコードして、回答を見つける。
2つの帰納的論理推論データセットと3つの帰納的推論データセットについて実験を行った。
論文 参考訳(メタデータ) (2023-05-23T01:25:29Z) - Complex Logical Reasoning over Knowledge Graphs using Large Language Models [13.594992599230277]
知識グラフ(KG)に対する推論は、エンティティ間の関係を深く理解する必要がある課題である。
現在のアプローチは、論理的なクエリ操作のために、ベクトル空間にエンティティを埋め込むための学習ジオメトリに依存している。
本稿では,文脈的KG探索と論理的クエリ推論を組み合わせた複雑なKG推論を定式化する,言語誘導型知識グラフによる抽象推論(LARK)を提案する。
論文 参考訳(メタデータ) (2023-05-02T02:21:49Z) - Compositional Generalization in Unsupervised Compositional
Representation Learning: A Study on Disentanglement and Emergent Language [48.37815764394315]
合成一般化を直接テストできる2つのデータセット上で、3つの教師なし表現学習アルゴリズムについて検討する。
単純なモデルと少ないラベルでボトルネック表現を直接使用すると、学習された表現そのものの前後のレイヤからの表現よりも、より悪い一般化につながる可能性がある。
驚くべきことに、不整合表現を生成する圧力の増加は、より悪い一般化を伴う表現を生成するのに対し、ELモデルからの表現は強い合成一般化を示す。
論文 参考訳(メタデータ) (2022-10-02T10:35:53Z) - Compositional Generalization Requires Compositional Parsers [69.77216620997305]
直近のCOGSコーパスにおける構成原理によって導かれるシーケンス・ツー・シーケンスモデルとモデルを比較した。
構造一般化は構成一般化の重要な尺度であり、複雑な構造を認識するモデルを必要とする。
論文 参考訳(メタデータ) (2022-02-24T07:36:35Z) - Grounded Graph Decoding Improves Compositional Generalization in
Question Answering [68.72605660152101]
質問応答モデルは、長いシーケンスやより複雑なテスト構造のようなトレーニングパターンの新しい構成に一般化するのに苦労する。
構造化された予測をアテンション機構でグラウンド化することで,言語表現の合成一般化を改善する手法であるグラウンドドグラフデコーディングを提案する。
本モデルは,質問応答における合成一般化の挑戦的ベンチマークである構成自由ベース質問(CFQ)データセットにおいて,最先端のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2021-11-05T17:50:14Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
解法ジレンマの統一概念に基づくグラフ分類における本質的難易度の研究」
構造ランドマークと相互作用モデリングのためのインダクティブニューラルネットワークモデルSLIM'を提案する。
論文 参考訳(メタデータ) (2020-06-29T01:01:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。