Physics-Informed Regularization for Domain-Agnostic Dynamical System Modeling
- URL: http://arxiv.org/abs/2410.06366v1
- Date: Tue, 8 Oct 2024 21:04:01 GMT
- Title: Physics-Informed Regularization for Domain-Agnostic Dynamical System Modeling
- Authors: Zijie Huang, Wanjia Zhao, Jingdong Gao, Ziniu Hu, Xiao Luo, Yadi Cao, Yuanzhou Chen, Yizhou Sun, Wei Wang,
- Abstract summary: We present a framework that achieves high-precision modeling for a wide range of dynamical systems.
It helps preserve energies for conservative systems while serving as a strong inductive bias for non-conservative, reversible systems.
By integrating the TRS loss within neural ordinary differential equation models, the proposed model TREAT demonstrates superior performance on diverse physical systems.
- Score: 41.82469276824927
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Learning complex physical dynamics purely from data is challenging due to the intrinsic properties of systems to be satisfied. Incorporating physics-informed priors, such as in Hamiltonian Neural Networks (HNNs), achieves high-precision modeling for energy-conservative systems. However, real-world systems often deviate from strict energy conservation and follow different physical priors. To address this, we present a framework that achieves high-precision modeling for a wide range of dynamical systems from the numerical aspect, by enforcing Time-Reversal Symmetry (TRS) via a novel regularization term. It helps preserve energies for conservative systems while serving as a strong inductive bias for non-conservative, reversible systems. While TRS is a domain-specific physical prior, we present the first theoretical proof that TRS loss can universally improve modeling accuracy by minimizing higher-order Taylor terms in ODE integration, which is numerically beneficial to various systems regardless of their properties, even for irreversible systems. By integrating the TRS loss within neural ordinary differential equation models, the proposed model TREAT demonstrates superior performance on diverse physical systems. It achieves a significant 11.5% MSE improvement in a challenging chaotic triple-pendulum scenario, underscoring TREAT's broad applicability and effectiveness.
Related papers
- Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
State-of-the-art in automatic parameter estimation from video is addressed by training supervised deep networks on large datasets.
We propose a method to estimate the physical parameters of any known, continuous governing equation from single videos.
arXiv Detail & Related papers (2024-10-02T09:44:54Z) - Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks [0.0]
This paper explores the use of Physics-Informed Neural Networks (PINNs) for the identification and estimation of dynamical systems.
PINNs offer a unique advantage by embedding known physical laws directly into the neural network's loss function, allowing for simple embedding of complex phenomena.
The results demonstrate that PINNs deliver an efficient tool across all aforementioned tasks, even in presence of modelling errors.
arXiv Detail & Related papers (2024-10-02T08:58:30Z) - TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
We propose a simple-yet-effective self-supervised regularization term as a soft constraint that aligns the forward and backward trajectories predicted by a continuous graph neural network-based ordinary differential equation (GraphODE)
It effectively imposes time-reversal symmetry to enable more accurate model predictions across a wider range of dynamical systems under classical mechanics.
Experimental results on a variety of physical systems demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-10-10T08:52:16Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - Neural Delay Differential Equations: System Reconstruction and Image
Classification [14.59919398960571]
We propose a new class of continuous-depth neural networks with delay, named Neural Delay Differential Equations (NDDEs)
Compared to NODEs, NDDEs have a stronger capacity of nonlinear representations.
We achieve lower loss and higher accuracy not only for the data produced synthetically but also for the CIFAR10, a well-known image dataset.
arXiv Detail & Related papers (2023-04-11T16:09:28Z) - Physically Consistent Neural ODEs for Learning Multi-Physics Systems [0.0]
In this paper, we leverage the framework of Irreversible port-Hamiltonian Systems (IPHS), which can describe most multi-physics systems.
We propose Physically Consistent NODEs (PC-NODEs) to learn parameters from data.
We demonstrate the effectiveness of the proposed method by learning the thermodynamics of a building from the real-world measurements.
arXiv Detail & Related papers (2022-11-11T11:20:35Z) - DySMHO: Data-Driven Discovery of Governing Equations for Dynamical
Systems via Moving Horizon Optimization [77.34726150561087]
We introduce Discovery of Dynamical Systems via Moving Horizon Optimization (DySMHO), a scalable machine learning framework.
DySMHO sequentially learns the underlying governing equations from a large dictionary of basis functions.
Canonical nonlinear dynamical system examples are used to demonstrate that DySMHO can accurately recover the governing laws.
arXiv Detail & Related papers (2021-07-30T20:35:03Z) - Forced Variational Integrator Networks for Prediction and Control of
Mechanical Systems [7.538482310185133]
We show that forced variational integrator networks (FVIN) architecture allows us to accurately account for energy dissipation and external forcing.
This can result in highly-data efficient model-based control and can predict on real non-conservative systems.
arXiv Detail & Related papers (2021-06-05T21:39:09Z) - Time-Reversal Symmetric ODE Network [138.02741983098454]
Time-reversal symmetry is a fundamental property that frequently holds in classical and quantum mechanics.
We propose a novel loss function that measures how well our ordinary differential equation (ODE) networks comply with this time-reversal symmetry.
We show that, even for systems that do not possess the full time-reversal symmetry, TRS-ODENs can achieve better predictive performances over baselines.
arXiv Detail & Related papers (2020-07-22T12:19:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.