Adaptive Random Fourier Features Training Stabilized By Resampling With Applications in Image Regression
- URL: http://arxiv.org/abs/2410.06399v1
- Date: Tue, 8 Oct 2024 22:08:03 GMT
- Title: Adaptive Random Fourier Features Training Stabilized By Resampling With Applications in Image Regression
- Authors: Aku Kammonen, Anamika Pandey, Erik von Schwerin, Raúl Tempone,
- Abstract summary: We present an enhanced adaptive random Fourier features (ARFF) training algorithm for shallow neural networks.
This method uses a particle filter type resampling technique to stabilize the training process and reduce sensitivity to parameter choices.
- Score: 0.8947831206263182
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an enhanced adaptive random Fourier features (ARFF) training algorithm for shallow neural networks, building upon the work introduced in "Adaptive Random Fourier Features with Metropolis Sampling", Kammonen et al., Foundations of Data Science, 2(3):309--332, 2020. This improved method uses a particle filter type resampling technique to stabilize the training process and reduce sensitivity to parameter choices. With resampling, the Metropolis test may also be omitted, reducing the number of hyperparameters and reducing the computational cost per iteration, compared to ARFF. We present comprehensive numerical experiments demonstrating the efficacy of our proposed algorithm in function regression tasks, both as a standalone method and as a pre-training step before gradient-based optimization, here Adam. Furthermore, we apply our algorithm to a simple image regression problem, showcasing its utility in sampling frequencies for the random Fourier features (RFF) layer of coordinate-based multilayer perceptrons (MLPs). In this context, we use the proposed algorithm to sample the parameters of the RFF layer in an automated manner.
Related papers
- Adaptive Selection of Sampling-Reconstruction in Fourier Compressed Sensing [13.775902519100075]
Compressed sensing (CS) has emerged to overcome the inefficiency of Nyquist sampling.
Deep learning-based reconstruction has been a promising alternative to optimization-based reconstruction.
arXiv Detail & Related papers (2024-09-18T06:51:29Z) - LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
Recent deep neural networks (DNNs) have made impressive progress in performance by introducing learned data priors.
We propose a novel method of Learning Resampling (termed LeRF) which takes advantage of both the structural priors learned by DNNs and the locally continuous assumption.
LeRF assigns spatially varying resampling functions to input image pixels and learns to predict the shapes of these resampling functions with a neural network.
arXiv Detail & Related papers (2024-07-13T16:09:45Z) - Data-Driven Filter Design in FBP: Transforming CT Reconstruction with Trainable Fourier Series [3.6508148866314163]
We introduce a trainable filter for computed tomography (CT) reconstruction within the filtered backprojection (FBP) framework.
This method overcomes the limitation in noise reduction by optimizing Fourier series coefficients to construct the filter.
Our filter can be easily integrated into existing CT reconstruction models, making it an adaptable tool for a wide range of practical applications.
arXiv Detail & Related papers (2024-01-29T10:47:37Z) - On Optimal Sampling for Learning SDF Using MLPs Equipped with Positional
Encoding [79.67071790034609]
We devise a tool to determine the appropriate sampling rate for learning an accurate neural implicit field without undesirable side effects.
It is observed that a PE-equipped has an intrinsic frequency much higher than the highest frequency component in the PE layer.
We empirically show in the setting of SDF fitting, this recommended sampling rate is sufficient to secure accurate fitting results.
arXiv Detail & Related papers (2024-01-02T10:51:52Z) - Neural Fields with Thermal Activations for Arbitrary-Scale Super-Resolution [56.089473862929886]
We present a novel way to design neural fields such that points can be queried with an adaptive Gaussian PSF.
With its theoretically guaranteed anti-aliasing, our method sets a new state of the art for arbitrary-scale single image super-resolution.
arXiv Detail & Related papers (2023-11-29T14:01:28Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Adaptive Client Sampling in Federated Learning via Online Learning with
Bandit Feedback [36.05851452151107]
federated learning (FL) systems need to sample a subset of clients that are involved in each round of training.
Despite its importance, there is limited work on how to sample clients effectively.
We show how our sampling method can improve the convergence speed of optimization algorithms.
arXiv Detail & Related papers (2021-12-28T23:50:52Z) - Supervised Learning and the Finite-Temperature String Method for
Computing Committor Functions and Reaction Rates [0.0]
A central object in the computational studies of rare events is the committor function.
We show additional modifications are needed to improve the accuracy of the algorithm.
arXiv Detail & Related papers (2021-07-28T17:44:00Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
We propose a new reinforcement learning based ZO algorithm (ZO-RL) with learning the sampling policy for generating the perturbations in ZO optimization instead of using random sampling.
Our results show that our ZO-RL algorithm can effectively reduce the variances of ZO gradient by learning a sampling policy, and converge faster than existing ZO algorithms in different scenarios.
arXiv Detail & Related papers (2021-04-09T14:50:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.