Adaptive Selection of Sampling-Reconstruction in Fourier Compressed Sensing
- URL: http://arxiv.org/abs/2409.11738v2
- Date: Thu, 19 Sep 2024 03:54:58 GMT
- Title: Adaptive Selection of Sampling-Reconstruction in Fourier Compressed Sensing
- Authors: Seongmin Hong, Jaehyeok Bae, Jongho Lee, Se Young Chun,
- Abstract summary: Compressed sensing (CS) has emerged to overcome the inefficiency of Nyquist sampling.
Deep learning-based reconstruction has been a promising alternative to optimization-based reconstruction.
- Score: 13.775902519100075
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Compressed sensing (CS) has emerged to overcome the inefficiency of Nyquist sampling. However, traditional optimization-based reconstruction is slow and can not yield an exact image in practice. Deep learning-based reconstruction has been a promising alternative to optimization-based reconstruction, outperforming it in accuracy and computation speed. Finding an efficient sampling method with deep learning-based reconstruction, especially for Fourier CS remains a challenge. Existing joint optimization of sampling-reconstruction works ($\mathcal{H}_1$) optimize the sampling mask but have low potential as it is not adaptive to each data point. Adaptive sampling ($\mathcal{H}_2$) has also disadvantages of difficult optimization and Pareto sub-optimality. Here, we propose a novel adaptive selection of sampling-reconstruction ($\mathcal{H}_{1.5}$) framework that selects the best sampling mask and reconstruction network for each input data. We provide theorems that our method has a higher potential than $\mathcal{H}_1$ and effectively solves the Pareto sub-optimality problem in sampling-reconstruction by using separate reconstruction networks for different sampling masks. To select the best sampling mask, we propose to quantify the high-frequency Bayesian uncertainty of the input, using a super-resolution space generation model. Our method outperforms joint optimization of sampling-reconstruction ($\mathcal{H}_1$) and adaptive sampling ($\mathcal{H}_2$) by achieving significant improvements on several Fourier CS problems.
Related papers
- Proximal Oracles for Optimization and Sampling [18.77973093341588]
We consider convex optimization with non-smooth objective function and log-concave sampling with non-smooth potential.
To overcome the challenges caused by non-smoothness, our algorithms employ two powerful proximal frameworks in optimization and sampling.
arXiv Detail & Related papers (2024-04-02T18:52:28Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Plug-and-Play split Gibbs sampler: embedding deep generative priors in
Bayesian inference [12.91637880428221]
This paper introduces a plug-and-play sampling algorithm that leverages variable splitting to efficiently sample from a posterior distribution.
It divides the challenging task of posterior sampling into two simpler sampling problems.
Its performance is compared to recent state-of-the-art optimization and sampling methods.
arXiv Detail & Related papers (2023-04-21T17:17:51Z) - Adaptive Client Sampling in Federated Learning via Online Learning with
Bandit Feedback [36.05851452151107]
federated learning (FL) systems need to sample a subset of clients that are involved in each round of training.
Despite its importance, there is limited work on how to sample clients effectively.
We show how our sampling method can improve the convergence speed of optimization algorithms.
arXiv Detail & Related papers (2021-12-28T23:50:52Z) - High-Dimensional Simulation Optimization via Brownian Fields and Sparse
Grids [14.15772050249329]
High-dimensional simulation optimization is notoriously challenging.
We propose a new sampling algorithm that converges to a global optimal solution.
We show that the proposed algorithm dramatically outperforms typical alternatives in practice.
arXiv Detail & Related papers (2021-07-19T03:03:27Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Adaptive Sampling of Pareto Frontiers with Binary Constraints Using
Regression and Classification [0.0]
We present a novel adaptive optimization algorithm for black-box multi-objective optimization problems with binary constraints.
Our method is based on probabilistic regression and classification models, which act as a surrogate for the optimization goals.
We also present a novel ellipsoid truncation method to speed up the expected hypervolume calculation.
arXiv Detail & Related papers (2020-08-27T09:15:02Z) - Bandit Samplers for Training Graph Neural Networks [63.17765191700203]
Several sampling algorithms with variance reduction have been proposed for accelerating the training of Graph Convolution Networks (GCNs)
These sampling algorithms are not applicable to more general graph neural networks (GNNs) where the message aggregator contains learned weights rather than fixed weights, such as Graph Attention Networks (GAT)
arXiv Detail & Related papers (2020-06-10T12:48:37Z) - Robust Sampling in Deep Learning [62.997667081978825]
Deep learning requires regularization mechanisms to reduce overfitting and improve generalization.
We address this problem by a new regularization method based on distributional robust optimization.
During the training, the selection of samples is done according to their accuracy in such a way that the worst performed samples are the ones that contribute the most in the optimization.
arXiv Detail & Related papers (2020-06-04T09:46:52Z) - Non-Adaptive Adaptive Sampling on Turnstile Streams [57.619901304728366]
We give the first relative-error algorithms for column subset selection, subspace approximation, projective clustering, and volume on turnstile streams that use space sublinear in $n$.
Our adaptive sampling procedure has a number of applications to various data summarization problems that either improve state-of-the-art or have only been previously studied in the more relaxed row-arrival model.
arXiv Detail & Related papers (2020-04-23T05:00:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.