Stochastic Sparse Sampling: A Framework for Variable-Length Medical Time Series Classification
- URL: http://arxiv.org/abs/2410.06412v2
- Date: Tue, 22 Oct 2024 03:11:31 GMT
- Title: Stochastic Sparse Sampling: A Framework for Variable-Length Medical Time Series Classification
- Authors: Xavier Mootoo, Alan A. Díaz-Montiel, Milad Lankarany, Hina Tabassum,
- Abstract summary: We propose $textbfS$tochastic $textbfS$parse $textbfS$ampling (SSS), a novel VTSC framework developed for medical time series.
SSS manages variable-length sequences by sparsely sampling fixed windows to compute local predictions, which are then aggregated and calibrated to form a global prediction.
We evaluate our method on the Epilepsy iEEG Multicenter dataset, a heterogeneous collection of intracranial electroencephalography (iEEG) recordings obtained from four independent medical centers.
- Score: 9.474649136535705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While the majority of time series classification research has focused on modeling fixed-length sequences, variable-length time series classification (VTSC) remains critical in healthcare, where sequence length may vary among patients and events. To address this challenge, we propose $\textbf{S}$tochastic $\textbf{S}$parse $\textbf{S}$ampling (SSS), a novel VTSC framework developed for medical time series. SSS manages variable-length sequences by sparsely sampling fixed windows to compute local predictions, which are then aggregated and calibrated to form a global prediction. We apply SSS to the task of seizure onset zone (SOZ) localization, a critical VTSC problem requiring identification of seizure-inducing brain regions from variable-length electrophysiological time series. We evaluate our method on the Epilepsy iEEG Multicenter Dataset, a heterogeneous collection of intracranial electroencephalography (iEEG) recordings obtained from four independent medical centers. SSS demonstrates superior performance compared to state-of-the-art (SOTA) baselines across most medical centers, and superior performance on all out-of-distribution (OOD) unseen medical centers. Additionally, SSS naturally provides post-hoc insights into local signal characteristics related to the SOZ, by visualizing temporally averaged local predictions throughout the signal.
Related papers
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
We introduce the Med-ST framework for fine-grained spatial and temporal modeling.
For spatial modeling, Med-ST employs the Mixture of View Expert (MoVE) architecture to integrate different visual features from both frontal and lateral views.
For temporal modeling, we propose a novel cross-modal bidirectional cycle consistency objective by forward mapping classification (FMC) and reverse mapping regression (RMR)
arXiv Detail & Related papers (2024-05-30T03:15:09Z) - Temporal Cross-Attention for Dynamic Embedding and Tokenization of Multimodal Electronic Health Records [1.6609516435725236]
We introduce a dynamic embedding and tokenization framework for precise representation of multimodal clinical time series.
Our framework outperformed baseline approaches on the task of predicting the occurrence of nine postoperative complications.
arXiv Detail & Related papers (2024-03-06T19:46:44Z) - ICU Mortality Prediction Using Long Short-Term Memory Networks [0.0]
We implement an automatic data-driven system, which analyzes large amounts of temporal data derived from Electronic Health Records (EHRs)
We extract high-level information so as to predict in-hospital mortality and Length of Stay (LOS) early.
Experiments highlight the efficiency of LSTM model with rigorous time-series measurements for building real-world prediction engines.
arXiv Detail & Related papers (2023-08-18T09:44:47Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
We propose an unsupervised method to simultaneously learn local and global shape structures across population anatomies.
Our pipeline significantly improves unsupervised correspondence estimation for SSMs compared to baseline methods.
Our method is robust enough to learn from noisy neural network predictions, potentially enabling scaling SSMs to larger patient populations.
arXiv Detail & Related papers (2023-04-15T09:39:52Z) - The Brain Tumor Sequence Registration (BraTS-Reg) Challenge: Establishing Correspondence Between Pre-Operative and Follow-up MRI Scans of Diffuse Glioma Patients [31.567542945171834]
We describe the Brain Tumor Sequence Registration (BraTS-Reg) challenge.
BraTS-Reg is the first public benchmark environment for deformable registration algorithms.
The aim of BraTS-Reg is to continue to serve as an active resource for research.
arXiv Detail & Related papers (2021-12-13T19:25:16Z) - Large-scale Augmented Granger Causality (lsAGC) for Connectivity
Analysis in Complex Systems: From Computer Simulations to Functional MRI
(fMRI) [0.0]
We introduce large-scale Augmented Granger Causality (lsAGC) as a method for connectivity analysis in complex systems.
lsAGC algorithm combines dimension reduction with source time-series augmentation.
We quantitatively evaluate the performance of lsAGC on synthetic directional time-series networks with known ground truth.
arXiv Detail & Related papers (2021-01-10T01:44:48Z) - An Adversarial Domain Separation Framework for Septic Shock Early
Prediction Across EHR Systems [7.058760708627898]
We propose a general domain adaptation (DA) framework that tackles two categories of discrepancies in EHRs collected from different medical systems.
We evaluate our framework for early diagnosis of an extremely challenging condition, septic shock, using two real-world EHRs from distinct medical systems in the U.S.
arXiv Detail & Related papers (2020-10-26T23:41:33Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
We develop a deep learning approach for clustering time-series data, where each cluster comprises patients who share similar future outcomes of interest.
Experiments on two real-world datasets show that our model achieves superior clustering performance over state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-06-15T20:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.