論文の概要: Grounding Robot Policies with Visuomotor Language Guidance
- arxiv url: http://arxiv.org/abs/2410.06473v1
- Date: Thu, 10 Oct 2024 04:03:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 05:29:07.130133
- Title: Grounding Robot Policies with Visuomotor Language Guidance
- Title(参考訳): Visuomotor Language Guidance を用いた接地ロボット政策
- Authors: Arthur Bucker, Pablo Ortega, Jonathan Francis, Jean Oh,
- Abstract要約: ロボットポリシーを現在の状況に基盤付けるためのエージェントベースのフレームワークを提案する。
提案するフレームワークは、特定の役割のために設計された会話エージェントのセットで構成されている。
弊社のアプローチは、操作ポリシーを効果的にガイドし、成功率を大幅に向上させることを実証する。
- 参考スコア(独自算出の注目度): 15.774237279917594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in the fields of natural language processing and computer vision have shown great potential in understanding the underlying dynamics of the world from large-scale internet data. However, translating this knowledge into robotic systems remains an open challenge, given the scarcity of human-robot interactions and the lack of large-scale datasets of real-world robotic data. Previous robot learning approaches such as behavior cloning and reinforcement learning have shown great capabilities in learning robotic skills from human demonstrations or from scratch in specific environments. However, these approaches often require task-specific demonstrations or designing complex simulation environments, which limits the development of generalizable and robust policies for new settings. Aiming to address these limitations, we propose an agent-based framework for grounding robot policies to the current context, considering the constraints of a current robot and its environment using visuomotor-grounded language guidance. The proposed framework is composed of a set of conversational agents designed for specific roles -- namely, high-level advisor, visual grounding, monitoring, and robotic agents. Given a base policy, the agents collectively generate guidance at run time to shift the action distribution of the base policy towards more desirable future states. We demonstrate that our approach can effectively guide manipulation policies to achieve significantly higher success rates both in simulation and in real-world experiments without the need for additional human demonstrations or extensive exploration. Project videos at https://sites.google.com/view/motorcortex/home.
- Abstract(参考訳): 自然言語処理とコンピュータビジョンの分野での最近の進歩は、大規模なインターネットデータから世界の基盤となるダイナミクスを理解する大きな可能性を示している。
しかし、人間とロボットの相互作用が不足し、現実世界のロボットデータの大規模なデータセットが不足していることを考えると、この知識をロボットシステムに翻訳することは依然としてオープンな課題である。
行動クローニングや強化学習といった従来のロボット学習アプローチは、人間のデモや特定の環境でのスクラッチからロボットスキルを学ぶ上で、優れた能力を示している。
しかしながら、これらのアプローチは、しばしばタスク固有のデモンストレーションや複雑なシミュレーション環境の設計を必要とし、新しい設定のための一般化可能で堅牢なポリシーの開発を制限する。
これらの制約に対処するために,現時点のロボットと環境の制約を考慮したロボットポリシーを基盤としたエージェントベースのフレームワークを提案する。
提案するフレームワークは,特定の役割,すなわちハイレベルアドバイザ,視覚的接地,監視,ロボットエージェント用に設計された,会話エージェントのセットで構成されている。
基本方針が与えられた場合、エージェントは実行時に一括してガイダンスを生成し、基本方針の行動分布をより望ましい将来の状態にシフトさせる。
提案手法は,シミュレーションと実世界の実験の両方において,人体実験や広範囲な探索を必要とせず,極めて高い成功率を達成するための操作ポリシーを効果的に導出できることを実証する。
プロジェクトビデオはhttps://sites.google.com/view/motorcortex/home.com。
関連論文リスト
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - Robotic Control via Embodied Chain-of-Thought Reasoning [86.6680905262442]
学習したロボット制御ポリシーの鍵となる制限は、トレーニングデータの外部で一般化できないことである。
視覚言語行動モデル(VLA)に関する最近の研究は、大規模なインターネット事前学習型視覚言語モデルを使用することで、その堅牢性と一般化能力を大幅に向上させることができることを示した。
ロボットの動作を予測する前に、VLAに対して、計画、サブタスク、動作、視覚的接地機能について複数の推論を行うために、VLAに対してEmbodied Chain-of-Thought Reasoning (ECoT)を導入する。
論文 参考訳(メタデータ) (2024-07-11T17:31:01Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
脚のついたロボットは、様々な環境をナビゲートし、幅広い障害を克服することができる。
現在の学習手法は、人間の監督を伴わずに、予期せぬ状況の長い尾への一般化に苦慮することが多い。
本稿では,VLM-Predictive Control (VLM-PC) というシステムを提案する。
論文 参考訳(メタデータ) (2024-07-02T21:00:30Z) - A Survey on Robotics with Foundation Models: toward Embodied AI [30.999414445286757]
近年のコンピュータビジョン,自然言語処理,マルチモーダリティ学習の進歩は,基礎モデルが特定のタスクに対して超人的能力を持つことを示している。
この調査は、ロボット工学の基礎モデルの包括的で最新の概要を提供し、自律的な操作に焦点を当て、高レベルの計画と低レベルの制御を包含することを目的としている。
論文 参考訳(メタデータ) (2024-02-04T07:55:01Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGenはジェネレーティブなロボットエージェントで、ジェネレーティブなシミュレーションを通じて、さまざまなロボットのスキルを自動的に学習する。
我々の研究は、大規模モデルに埋め込まれた広範囲で多目的な知識を抽出し、それらをロボット工学の分野に移す試みである。
論文 参考訳(メタデータ) (2023-11-02T17:59:21Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
インターネット規模の基盤モデルによって生成された言語推論セグメンテーションマスクを効果的に活用する新しいパラダイムを提案する。
提案手法は,オブジェクトのポーズを効果的かつ堅牢に知覚し,サンプル効率のよい一般化学習を可能にする。
デモは提出されたビデオで見ることができ、より包括的なデモはlink1またはlink2で見ることができます。
論文 参考訳(メタデータ) (2023-06-09T07:22:12Z) - Learning Video-Conditioned Policies for Unseen Manipulation Tasks [83.2240629060453]
ビデオ条件付きポリシー学習は、以前は目に見えないタスクの人間のデモをロボット操作スキルにマッピングする。
我々は,現在のシーン観察と対象課題のビデオから適切なアクションを生成するためのポリシーを学習する。
われわれは,多タスクロボット操作環境の課題と,技術面における性能の面から,そのアプローチを検証した。
論文 参考訳(メタデータ) (2023-05-10T16:25:42Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
ロボット学習のためのプラットフォームとしてデュアルアーム設定を提案する。
このセットアップの潜在的なメリットと、追求できる課題と研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-10-15T12:51:57Z) - Low Dimensional State Representation Learning with Robotics Priors in
Continuous Action Spaces [8.692025477306212]
強化学習アルゴリズムは、エンドツーエンドで複雑なロボティクスタスクを解くことができることが証明されている。
本稿では,ロボットの生の知覚情報から得られる高次元の観察から,低次元状態表現の学習と最適ポリシーの学習を組み合わせた枠組みを提案する。
論文 参考訳(メタデータ) (2021-07-04T15:42:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。