論文の概要: Low Dimensional State Representation Learning with Robotics Priors in
Continuous Action Spaces
- arxiv url: http://arxiv.org/abs/2107.01667v1
- Date: Sun, 4 Jul 2021 15:42:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 14:51:02.933213
- Title: Low Dimensional State Representation Learning with Robotics Priors in
Continuous Action Spaces
- Title(参考訳): 連続行動空間におけるロボットによる低次元状態表現学習
- Authors: Nicol\`o Botteghi, Khaled Alaa, Mannes Poel, Beril Sirmacek, Christoph
Brune, Abeje Mersha, Stefano Stramigioli
- Abstract要約: 強化学習アルゴリズムは、エンドツーエンドで複雑なロボティクスタスクを解くことができることが証明されている。
本稿では,ロボットの生の知覚情報から得られる高次元の観察から,低次元状態表現の学習と最適ポリシーの学習を組み合わせた枠組みを提案する。
- 参考スコア(独自算出の注目度): 8.692025477306212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous robots require high degrees of cognitive and motoric intelligence
to come into our everyday life. In non-structured environments and in the
presence of uncertainties, such degrees of intelligence are not easy to obtain.
Reinforcement learning algorithms have proven to be capable of solving
complicated robotics tasks in an end-to-end fashion without any need for
hand-crafted features or policies. Especially in the context of robotics, in
which the cost of real-world data is usually extremely high, reinforcement
learning solutions achieving high sample efficiency are needed. In this paper,
we propose a framework combining the learning of a low-dimensional state
representation, from high-dimensional observations coming from the robot's raw
sensory readings, with the learning of the optimal policy, given the learned
state representation. We evaluate our framework in the context of mobile robot
navigation in the case of continuous state and action spaces. Moreover, we
study the problem of transferring what learned in the simulated virtual
environment to the real robot without further retraining using real-world data
in the presence of visual and depth distractors, such as lighting changes and
moving obstacles.
- Abstract(参考訳): 自律型ロボットは、私たちの日常生活に高レベルの認知的および自律的知性を必要とする。
非構造環境や不確実性の存在下では、そのような知能の程度は容易には得られない。
強化学習アルゴリズムは、手作りの機能やポリシーを必要とせずに、エンドツーエンドで複雑なロボティクスタスクを解決できることが証明されている。
特に、実世界のデータのコストが通常非常に高いロボティクスの文脈では、高いサンプル効率を達成する強化学習ソリューションが必要である。
本稿では,ロボットの生の知覚情報から得られる高次元の観察から,学習状態表現から得られた最適方針の学習まで,低次元状態表現の学習を組み合わせる枠組みを提案する。
我々は,移動ロボットナビゲーションの文脈において,連続状態や行動空間において,我々のフレームワークを評価する。
さらに,仮想環境シミュレーションで学んだことを実ロボットに移す問題を,照明変化や移動障害物などの視覚・奥行き障害の存在下で,実世界データを用いてさらに再訓練することなく検討した。
関連論文リスト
- A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
私たちは、NeurIPS 2023カンファレンスでRobot Air Hockey Challengeを組織しました。
我々は、シム・トゥ・リアルギャップ、低レベルの制御問題、安全性問題、リアルタイム要件、実世界のデータの限られた可用性など、ロボット工学における実践的な課題に焦点を当てる。
その結果、学習に基づくアプローチと事前知識を組み合わせたソリューションは、実際のデプロイメントが困難である場合にデータのみに依存するソリューションよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-08T17:20:47Z) - Grounding Robot Policies with Visuomotor Language Guidance [15.774237279917594]
ロボットポリシーを現在の状況に基盤付けるためのエージェントベースのフレームワークを提案する。
提案するフレームワークは、特定の役割のために設計された会話エージェントのセットで構成されている。
弊社のアプローチは、操作ポリシーを効果的にガイドし、成功率を大幅に向上させることを実証する。
論文 参考訳(メタデータ) (2024-10-09T02:00:37Z) - Autonomous Robotic Reinforcement Learning with Asynchronous Human
Feedback [27.223725464754853]
GEARは、ロボットを現実世界の環境に配置し、中断することなく自律的に訓練することを可能にする。
システムはリモート、クラウドソース、非専門家からの非同期フィードバックのみを必要とする、Webインターフェースにロボットエクスペリエンスをストリームする。
論文 参考訳(メタデータ) (2023-10-31T16:43:56Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
ロボット学習のためのプラットフォームとしてデュアルアーム設定を提案する。
このセットアップの潜在的なメリットと、追求できる課題と研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-10-15T12:51:57Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
本稿では,事前学習されたロボット知覚モデルの最終的な目的と協調して設計された感覚データのタスク関連表現を学習するアルゴリズムを提案する。
本アルゴリズムは,ロボットの知覚データを競合する手法の最大11倍まで積極的に圧縮する。
論文 参考訳(メタデータ) (2020-11-06T07:39:08Z) - Low Dimensional State Representation Learning with Reward-shaped Priors [7.211095654886105]
本研究では,観測結果から低次元状態空間への写像の学習を目的とした手法を提案する。
このマッピングは、環境とタスクの事前知識を組み込むために形作られた損失関数を用いて教師なしの学習で学習される。
本手法は,シミュレーション環境における移動ロボットナビゲーションタスクおよび実ロボット上でのテストを行う。
論文 参考訳(メタデータ) (2020-07-29T13:00:39Z) - Sim2Real for Peg-Hole Insertion with Eye-in-Hand Camera [58.720142291102135]
シミュレーションを用いてペグホール挿入問題を学習し,学習したモデルを実ロボットに転送する。
本稿では,RGB-Dとジョイント情報(プロレセプション)のみを取り入れたトランスファーポリシーが,実際のロボットに対して良好に動作することを示す。
論文 参考訳(メタデータ) (2020-05-29T05:58:54Z) - The Ingredients of Real-World Robotic Reinforcement Learning [71.92831985295163]
実世界で収集されたデータによって継続的に自律的に改善できるロボット学習システムに必要な要素について論じる。
本稿では,このようなシステムの特異なインスタンス化を事例として,デクスタラスな操作を事例として提案する。
我々は人間の介入なしに学習できることを実証し、現実世界の3本指の手で様々な視覚ベースのスキルを習得する。
論文 参考訳(メタデータ) (2020-04-27T03:36:10Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIENは現実的で物理に富んだシミュレートされた環境であり、音声オブジェクトのための大規模なセットをホストしている。
部品検出と動作特性認識のための最先端の視覚アルゴリズムの評価を行い,ロボットインタラクションタスクの実証を行った。
論文 参考訳(メタデータ) (2020-03-19T00:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。