論文の概要: BiC-MPPI: Goal-Pursuing, Sampling-Based Bidirectional Rollout Clustering Path Integral for Trajectory Optimization
- arxiv url: http://arxiv.org/abs/2410.06493v1
- Date: Wed, 9 Oct 2024 02:36:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 05:18:55.620160
- Title: BiC-MPPI: Goal-Pursuing, Sampling-Based Bidirectional Rollout Clustering Path Integral for Trajectory Optimization
- Title(参考訳): BiC-MPPI:軌道最適化のためのゴールポーズ,サンプリングに基づく双方向ロールアウトクラスタリングパス積分
- Authors: Minchan Jung, Kwangki Kim,
- Abstract要約: Bidirectional Clustered MPPI (BiC-MPPI) は、新しい軌道最適化手法である。
BiC-MPPIには、双方向ダイナミクス近似と新しいガイドコスト機構が組み込まれている。
- 参考スコア(独自算出の注目度): 0.46040036610482665
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces the Bidirectional Clustered MPPI (BiC-MPPI) algorithm, a novel trajectory optimization method aimed at enhancing goal-directed guidance within the Model Predictive Path Integral (MPPI) framework. BiC-MPPI incorporates bidirectional dynamics approximations and a new guide cost mechanism, improving both trajectory planning and goal-reaching performance. By leveraging forward and backward rollouts, the bidirectional approach ensures effective trajectory connections between initial and terminal states, while the guide cost helps discover dynamically feasible paths. Experimental results demonstrate that BiC-MPPI outperforms existing MPPI variants in both 2D and 3D environments, achieving higher success rates and competitive computation times across 900 simulations on a modified BARN dataset for autonomous navigation. GitHub: https://github.com/i-ASL/BiC-MPPI
- Abstract(参考訳): 本稿では,モデル予測パス積分(MPPI)フレームワーク内での目標指向のガイダンス向上を目的とした,双方向クラスタリングMPPI(Bidirectional Clustered MPPI)アルゴリズムを提案する。
BiC-MPPIは、双方向ダイナミクス近似と新しいガイドコスト機構を導入し、軌道計画と目標達成性能の両方を改善した。
前向きと後向きのロールアウトを活用することで、双方向のアプローチは初期状態と終端状態の間の効果的な軌道接続を保証し、ガイドコストは動的に実現可能なパスを発見するのに役立つ。
実験の結果,BiC-MPPIは2次元および3次元環境において既存のMPPIよりも優れており,自律ナビゲーションのための修正BARNデータセット上で900のシミュレーションで高い成功率と競合計算時間を達成していることがわかった。
GitHub:https://github.com/i-ASL/BiC-MPPI
関連論文リスト
- Joint Transmit and Pinching Beamforming for PASS: Optimization-Based or Learning-Based? [89.05848771674773]
MISO (Multiple-input Single-output) フレームワークを提案する。
それは複数の導波路で構成されており、多数の低コストアンテナ(PA)を備えている。
PAの位置は、大規模パスと空間の両方にまたがるように再構成することができる。
論文 参考訳(メタデータ) (2025-02-12T18:54:10Z) - BiTrack: Bidirectional Offline 3D Multi-Object Tracking Using Camera-LiDAR Data [11.17376076195671]
BiTrackは2D-3D検出融合、初期軌道生成、双方向軌道再最適化のモジュールを含む3D OMOTフレームワークである。
KITTIデータセットを用いた実験結果から,BiTrackは3次元OMOTタスクの最先端性能を精度と効率で達成できることが示された。
論文 参考訳(メタデータ) (2024-06-26T15:09:54Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
本稿では,新しいSSCフレームワーク - Adrial Modality Modulation Network (AMMNet)を提案する。
AMMNetは、モダリティ間の勾配流の相互依存性を可能にするクロスモーダル変調と、動的勾配競争を利用するカスタマイズされた逆トレーニングスキームの2つのコアモジュールを導入している。
AMMNetは最先端のSSC法よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2024-03-12T11:48:49Z) - Current Effect-eliminated Optimal Target Assignment and Motion Planning
for a Multi-UUV System [4.62588687215906]
本稿では,海流がもたらす複雑さと課題に対処する革新的なアプローチ(CBNNTAP)を提案する。
バイオインスパイアされたニューラルネットワーク(BINN)アプローチを取り入れ、個々のUUVの最も効率的なパスを予測する。
CBNNTAPアルゴリズムにおける重要な革新は、海流の破壊的な影響に対処する能力である。
論文 参考訳(メタデータ) (2024-01-10T19:38:25Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
我々はtextttMEX というオンライン強化学習(オンラインRL)フレームワークを提案する。
textttMEXは、自動的に探索エクスプロイトのバランスをとりながら、見積もりと計画コンポーネントを統合する。
様々な MuJoCo 環境では,ベースラインを安定的なマージンで上回り,十分な報酬を得られる。
論文 参考訳(メタデータ) (2023-05-29T17:25:26Z) - Bi-Level Optimization Augmented with Conditional Variational Autoencoder
for Autonomous Driving in Dense Traffic [0.9281671380673306]
本稿では、最適行動決定と結果の軌跡を共同で計算するパラメータ化バイレベル最適化を提案する。
当社のアプローチは,GPUアクセラレーションバッチを使用してリアルタイムに動作し,変分オートエンコーダがウォームスタート戦略を学習する。
本手法は, 運転効率の競争力に優れながら, 衝突速度の観点から, 最先端モデル予測制御とRLアプローチより優れる。
論文 参考訳(メタデータ) (2022-12-05T12:56:42Z) - Variational Inference MPC using Normalizing Flows and
Out-of-Distribution Projection [7.195824023358536]
衝突のないナビゲーションのためのモデル予測制御(MPC)手法を提案する。
ロボットの力学と複雑な障害物測地の両方を考慮に入れた分布を学習する。
プロジェクション付きFlowMPPIは,分布内およびOOD環境において,最先端のMPCベースラインより優れていることを示す。
論文 参考訳(メタデータ) (2022-05-10T04:43:15Z) - Joint Feature Learning and Relation Modeling for Tracking: A One-Stream
Framework [76.70603443624012]
特徴学習と関係モデリングを統合した新しい一ストリーム追跡(OSTrack)フレームワークを提案する。
このようにして、相互誘導により識別的目標指向特徴を動的に抽出することができる。
OSTrackは、複数のベンチマークで最先端のパフォーマンスを実現しており、特に、ワンショットトラッキングベンチマークのGOT-10kでは印象的な結果を示している。
論文 参考訳(メタデータ) (2022-03-22T18:37:11Z) - Domain Adaptive Person Re-Identification via Coupling Optimization [58.567492812339566]
ドメイン適応型人物再識別(ReID)は、ドメインのギャップとターゲットシナリオに対するアノテーションの不足のために困難である。
本稿では,ドメイン不変写像 (DIM) 法とグローバル局所距離最適化 (GLO) を含む結合最適化手法を提案する。
GLOはターゲットドメインの教師なし設定でReIDモデルをトレーニングするために設計されている。
論文 参考訳(メタデータ) (2020-11-06T14:01:03Z) - BiTraP: Bi-directional Pedestrian Trajectory Prediction with Multi-modal
Goal Estimation [28.10445924083422]
BiTraPはCVAEに基づく目標条件付き双方向マルチモーダル軌道予測手法である。
BiTraPは、FPV(First-person view)とBEV(Bird's-eye view)の両方のシナリオに一般化し、最先端の結果を10~50%上回る。
論文 参考訳(メタデータ) (2020-07-29T02:40:17Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。