論文の概要: DiffGAD: A Diffusion-based Unsupervised Graph Anomaly Detector
- arxiv url: http://arxiv.org/abs/2410.06549v1
- Date: Wed, 9 Oct 2024 05:02:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 04:59:08.439260
- Title: DiffGAD: A Diffusion-based Unsupervised Graph Anomaly Detector
- Title(参考訳): DiffGAD:拡散型教師なしグラフ異常検出器
- Authors: Jinghan Li, Yuan Gao, Jinda Lu, Junfeng Fang, Congcong Wen, Hui Lin, Xiang Wang,
- Abstract要約: 拡散型グラフ異常検出器(DiffGAD)を提案する。
DiffGADの核心は、未熟な宇宙学習のパラダイムであり、それを差別的コンテンツで導くことによって、その習熟度を高めるために細心の注意を払って設計されている。
6つの実世界および大規模データセットを用いて実施したDiffGADの総合評価により,その異常な性能が示された。
- 参考スコア(独自算出の注目度): 17.191834562399293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Anomaly Detection (GAD) is crucial for identifying abnormal entities within networks, garnering significant attention across various fields. Traditional unsupervised methods, which decode encoded latent representations of unlabeled data with a reconstruction focus, often fail to capture critical discriminative content, leading to suboptimal anomaly detection. To address these challenges, we present a Diffusion-based Graph Anomaly Detector (DiffGAD). At the heart of DiffGAD is a novel latent space learning paradigm, meticulously designed to enhance its proficiency by guiding it with discriminative content. This innovative approach leverages diffusion sampling to infuse the latent space with discriminative content and introduces a content-preservation mechanism that retains valuable information across different scales, significantly improving its adeptness at identifying anomalies with limited time and space complexity. Our comprehensive evaluation of DiffGAD, conducted on six real-world and large-scale datasets with various metrics, demonstrated its exceptional performance.
- Abstract(参考訳): グラフ異常検出(GAD)は、ネットワーク内の異常な実体を識別するために重要であり、様々な分野において大きな注目を集めている。
従来の教師なしの方法では、ラベルなしデータの遅延表現を再構成焦点でデコードし、しばしば重要な識別内容のキャプチャに失敗し、極端に異常な検出に繋がった。
これらの課題に対処するため,拡散型グラフ異常検出器(DiffGAD)を提案する。
DiffGADの核心は、未熟な宇宙学習のパラダイムであり、それを差別的コンテンツで導くことによって、その習熟度を高めるために細心の注意を払って設計されている。
このイノベーティブなアプローチは拡散サンプリングを活用して、遅延空間を識別的内容で注入し、異なるスケールで貴重な情報を保持するコンテンツ保存機構を導入し、時間と空間の複雑さに制限のある異常を識別する能力を大幅に向上させる。
DiffGADの総合的な評価は、6つの実世界および大規模データセットと各種メトリクスを用いて行われ、その例外的な性能を示した。
関連論文リスト
- Towards Cross-domain Few-shot Graph Anomaly Detection [6.732699844225434]
ソースとターゲットドメイン間のデータ分散の相違により、クロスドメインの少数ショットグラフ異常検出(GAD)は簡単ではない。
我々は,上記の課題に対処するために,CDFS-GADと呼ばれるシンプルで効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-11T08:47:25Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - FGAD: Self-boosted Knowledge Distillation for An Effective Federated
Graph Anomaly Detection Framework [33.62637380192881]
グラフ異常検出(GAD)は、他のグラフと大きく異なる異常グラフを特定することを目的としている。
既存のGADメソッドは通常、集中的なトレーニングで実行される。
本稿では,これらの課題に対処する効果的なフェデレーショングラフ異常検出フレームワーク(FGAD)を提案する。
論文 参考訳(メタデータ) (2024-02-20T07:03:59Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
MultItask acTIve Graph Anomaly Detection framework,すなわちMITIGATEを提案する。
ノード分類タスクを結合することにより、MITIGATEは既知の異常を伴わずに配布外ノードを検出する能力を得る。
4つのデータセットに関する実証的研究は、MITIGATEが異常検出のための最先端の手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-01-24T03:43:45Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - Few-shot Message-Enhanced Contrastive Learning for Graph Anomaly
Detection [15.757864894708364]
グラフ異常検出は、多数派から大きく逸脱するグラフデータの例外的なインスタンスを特定する上で重要な役割を果たす。
我々はFMGADと呼ばれる新しい数ショットグラフ異常検出モデルを提案する。
FMGADは, 人工的に注入された異常やドメイン・有機異常によらず, 他の最先端手法よりも優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2023-11-17T07:49:20Z) - Enhancing Unsupervised Anomaly Detection with Score-Guided Network [13.127091975959358]
異常検出は、医療や金融システムなど、さまざまな現実世界のアプリケーションにおいて重要な役割を担っている。
正規データと異常データの間の異常スコアの差を学習・拡大するために,スコア誘導正規化を用いた新しいスコアネットワークを提案する。
次に,スコア誘導型オートエンコーダ(SG-AE)を提案する。
論文 参考訳(メタデータ) (2021-09-10T06:14:53Z) - Graph Convolutional Networks for traffic anomaly [4.172516437934823]
イベント検出は輸送において重要なタスクであり、そのタスクは大規模なイベントが都市交通ネットワークの大部分を破壊した時点のポイントを検出することである。
空間的および時間的交通パターンを完全に把握することは課題であるが、効果的な異常検出には重要な役割を果たす。
我々は, 交通条件を表す有向重み付きグラフ群において, 時間間隔毎に異常を検知する新しい手法で問題を定式化する。
論文 参考訳(メタデータ) (2020-12-25T22:36:22Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
正規データと異常データの間のKL偏差を計測する新たな目的関数を提案する。
提案手法は,複数のベンチマークデータセットの最先端性能を著しく上回っている。
論文 参考訳(メタデータ) (2020-12-09T08:16:35Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。