ES-Gaussian: Gaussian Splatting Mapping via Error Space-Based Gaussian Completion
- URL: http://arxiv.org/abs/2410.06613v2
- Date: Wed, 30 Oct 2024 10:21:13 GMT
- Title: ES-Gaussian: Gaussian Splatting Mapping via Error Space-Based Gaussian Completion
- Authors: Lu Chen, Yingfu Zeng, Haoang Li, Zhitao Deng, Jiafu Yan, Zhenjun Zhao,
- Abstract summary: Vision-based mapping often struggles with high-quality 3D reconstruction due to sparse point clouds.
We propose ES-Gaussian, an end-to-end system using a low-altitude camera and single-line LiDAR for high-quality 3D reconstruction.
- Score: 9.443354889048614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and affordable indoor 3D reconstruction is critical for effective robot navigation and interaction. Traditional LiDAR-based mapping provides high precision but is costly, heavy, and power-intensive, with limited ability for novel view rendering. Vision-based mapping, while cost-effective and capable of capturing visual data, often struggles with high-quality 3D reconstruction due to sparse point clouds. We propose ES-Gaussian, an end-to-end system using a low-altitude camera and single-line LiDAR for high-quality 3D indoor reconstruction. Our system features Visual Error Construction (VEC) to enhance sparse point clouds by identifying and correcting areas with insufficient geometric detail from 2D error maps. Additionally, we introduce a novel 3DGS initialization method guided by single-line LiDAR, overcoming the limitations of traditional multi-view setups and enabling effective reconstruction in resource-constrained environments. Extensive experimental results on our new Dreame-SR dataset and a publicly available dataset demonstrate that ES-Gaussian outperforms existing methods, particularly in challenging scenarios. The project page is available at https://chenlu-china.github.io/ES-Gaussian/.
Related papers
- G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
We introduce G2SDF, a novel approach that integrates a neural implicit Signed Distance Field into the Gaussian Splatting framework.
G2SDF achieves superior quality than prior works while maintaining the efficiency of 3DGS.
arXiv Detail & Related papers (2024-11-25T20:07:07Z) - Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
We introduce 3D Linear Splatting (3DLS), which replaces Gaussian kernels with linear kernels to achieve sharper and more precise results.
3DLS demonstrates state-of-the-art fidelity and accuracy, along with a 30% FPS improvement over baseline 3DGS.
arXiv Detail & Related papers (2024-11-19T11:59:54Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2 is a novel approach for large-scale scene reconstruction.
We implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence.
Our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs.
arXiv Detail & Related papers (2024-11-01T17:59:31Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - Mode-GS: Monocular Depth Guided Anchored 3D Gaussian Splatting for Robust Ground-View Scene Rendering [47.879695094904015]
We present a novelview rendering algorithm, Mode-GS, for ground-robot trajectory datasets.
Our approach is based on using anchored Gaussian splats, which are designed to overcome the limitations of existing 3D Gaussian splatting algorithms.
Our method results in improved rendering performance, based on PSNR, SSIM, and LPIPS metrics, in ground scenes with free trajectory patterns.
arXiv Detail & Related papers (2024-10-06T23:01:57Z) - GSFusion: Online RGB-D Mapping Where Gaussian Splatting Meets TSDF Fusion [12.964675001994124]
Traditional fusion algorithms preserve the spatial structure of 3D scenes.
They often lack realism in terms of visualization.
GSFusion significantly enhances computational efficiency without sacrificing rendering quality.
arXiv Detail & Related papers (2024-08-22T18:32:50Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
We introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory.
Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images.
GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms.
arXiv Detail & Related papers (2024-06-21T17:49:31Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - MM-Gaussian: 3D Gaussian-based Multi-modal Fusion for Localization and Reconstruction in Unbounded Scenes [12.973283255413866]
MM-Gaussian is a LiDAR-camera multi-modal fusion system for localization and mapping in unbounded scenes.
We utilize 3D Gaussian point clouds, with the assistance of pixel-level gradient descent, to fully exploit the color information in photos.
To further bolster the robustness of our system, we designed a relocalization module.
arXiv Detail & Related papers (2024-04-05T11:14:19Z) - DeepMIF: Deep Monotonic Implicit Fields for Large-Scale LiDAR 3D Mapping [46.80755234561584]
Recent learning-based methods integrate neural implicit representations and optimizable feature grids to approximate surfaces of 3D scenes.
In this work we depart from fitting LiDAR data exactly, instead letting the network optimize a non-metric monotonic implicit field defined in 3D space.
Our algorithm achieves high-quality dense 3D mapping performance as captured by multiple quantitative and perceptual measures and visual results obtained for Mai City, Newer College, and KITTI benchmarks.
arXiv Detail & Related papers (2024-03-26T09:58:06Z) - Sparse-view CT Reconstruction with 3D Gaussian Volumetric Representation [13.667470059238607]
Sparse-view CT is a promising strategy for reducing the radiation dose of traditional CT scans.
Recently, 3D Gaussian has been applied to model complex natural scenes.
We investigate their potential for sparse-view CT reconstruction.
arXiv Detail & Related papers (2023-12-25T09:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.