Sparse-view CT Reconstruction with 3D Gaussian Volumetric Representation
- URL: http://arxiv.org/abs/2312.15676v1
- Date: Mon, 25 Dec 2023 09:47:33 GMT
- Title: Sparse-view CT Reconstruction with 3D Gaussian Volumetric Representation
- Authors: Yingtai Li, Xueming Fu, Shang Zhao, Ruiyang Jin, S. Kevin Zhou
- Abstract summary: Sparse-view CT is a promising strategy for reducing the radiation dose of traditional CT scans.
Recently, 3D Gaussian has been applied to model complex natural scenes.
We investigate their potential for sparse-view CT reconstruction.
- Score: 13.667470059238607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse-view CT is a promising strategy for reducing the radiation dose of
traditional CT scans, but reconstructing high-quality images from incomplete
and noisy data is challenging. Recently, 3D Gaussian has been applied to model
complex natural scenes, demonstrating fast convergence and better rendering of
novel views compared to implicit neural representations (INRs). Taking
inspiration from the successful application of 3D Gaussians in natural scene
modeling and novel view synthesis, we investigate their potential for
sparse-view CT reconstruction. We leverage prior information from the
filtered-backprojection reconstructed image to initialize the Gaussians; and
update their parameters via comparing difference in the projection space.
Performance is further enhanced by adaptive density control. Compared to INRs,
3D Gaussians benefit more from prior information to explicitly bypass learning
in void spaces and allocate the capacity efficiently, accelerating convergence.
3D Gaussians also efficiently learn high-frequency details. Trained in a
self-supervised manner, 3D Gaussians avoid the need for large-scale paired
data. Our experiments on the AAPM-Mayo dataset demonstrate that 3D Gaussians
can provide superior performance compared to INR-based methods. This work is in
progress, and the code will be publicly available.
Related papers
- Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting [33.01987451251659]
3D Gaussian Splatting (3DGS) has emerged as a promising technique capable of real-time rendering with high-quality 3D reconstruction.
Despite its potential, 3DGS encounters challenges, including needle-like artifacts, suboptimal geometries, and inaccurate normals.
We introduce effective rank as a regularization, which constrains the structure of the Gaussians.
arXiv Detail & Related papers (2024-06-17T15:51:59Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - RaDe-GS: Rasterizing Depth in Gaussian Splatting [32.38730602146176]
Gaussian Splatting (GS) has proven to be highly effective in novel view synthesis, achieving high-quality and real-time rendering.
Our work introduces a Chamfer distance error comparable to NeuraLangelo on the DTU dataset and maintains similar computational efficiency as the original 3D GS methods.
arXiv Detail & Related papers (2024-06-03T15:56:58Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3D Gaussian splatting (3DGS) has shown promising results in rendering image and surface reconstruction.
This paper introduces R2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction.
arXiv Detail & Related papers (2024-05-31T08:39:02Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z) - AbsGS: Recovering Fine Details for 3D Gaussian Splatting [10.458776364195796]
3D Gaussian Splatting (3D-GS) technique couples 3D primitives with differentiable Gaussianization to achieve high-quality novel view results.
However, 3D-GS frequently suffers from over-reconstruction issue in intricate scenes containing high-frequency details, leading to blurry rendered images.
We present a comprehensive analysis of the cause of aforementioned artifacts, namely gradient collision.
Our strategy efficiently identifies large Gaussians in over-reconstructed regions, and recovers fine details by splitting.
arXiv Detail & Related papers (2024-04-16T11:44:12Z) - CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians [18.42203035154126]
We introduce a structured Gaussian representation that can be controlled in 2D image space.
We then constraint the Gaussians, in particular their position, and prevent them from moving independently during optimization.
We demonstrate significant improvements compared to the state-of-the-art sparse-view NeRF-based approaches on a variety of scenes.
arXiv Detail & Related papers (2024-03-28T15:27:13Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.