OmniPose6D: Towards Short-Term Object Pose Tracking in Dynamic Scenes from Monocular RGB
- URL: http://arxiv.org/abs/2410.06694v1
- Date: Wed, 9 Oct 2024 09:01:40 GMT
- Title: OmniPose6D: Towards Short-Term Object Pose Tracking in Dynamic Scenes from Monocular RGB
- Authors: Yunzhi Lin, Yipu Zhao, Fu-Jen Chu, Xingyu Chen, Weiyao Wang, Hao Tang, Patricio A. Vela, Matt Feiszli, Kevin Liang,
- Abstract summary: We introduce a large-scale synthetic dataset OmniPose6D, crafted to mirror the diversity of real-world conditions.
We present a benchmarking framework for a comprehensive comparison of pose tracking algorithms.
- Score: 40.62577054196799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To address the challenge of short-term object pose tracking in dynamic environments with monocular RGB input, we introduce a large-scale synthetic dataset OmniPose6D, crafted to mirror the diversity of real-world conditions. We additionally present a benchmarking framework for a comprehensive comparison of pose tracking algorithms. We propose a pipeline featuring an uncertainty-aware keypoint refinement network, employing probabilistic modeling to refine pose estimation. Comparative evaluations demonstrate that our approach achieves performance superior to existing baselines on real datasets, underscoring the effectiveness of our synthetic dataset and refinement technique in enhancing tracking precision in dynamic contexts. Our contributions set a new precedent for the development and assessment of object pose tracking methodologies in complex scenes.
Related papers
- Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
We present a way for learning a-temporal (4D) embedding, based on semantic semantic gears to allow for stratified modeling of dynamic regions of rendering the scene.
At the same time, almost for free, our tracking approach enables free-viewpoint of interest - a functionality not yet achieved by existing NeRF-based methods.
arXiv Detail & Related papers (2024-06-06T03:37:39Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - UniQuadric: A SLAM Backend for Unknown Rigid Object 3D Tracking and
Light-Weight Modeling [7.626461564400769]
We propose a novel SLAM backend that unifies ego-motion tracking, rigid object motion tracking, and modeling.
Our system showcases the potential application of object perception in complex dynamic scenes.
arXiv Detail & Related papers (2023-09-29T07:50:09Z) - HaDR: Applying Domain Randomization for Generating Synthetic Multimodal
Dataset for Hand Instance Segmentation in Cluttered Industrial Environments [0.0]
This study uses domain randomization to generate a synthetic RGB-D dataset for training multimodal instance segmentation models.
We show that our approach enables the models to outperform corresponding models trained on existing state-of-the-art datasets.
arXiv Detail & Related papers (2023-04-12T13:02:08Z) - Dyna-DepthFormer: Multi-frame Transformer for Self-Supervised Depth
Estimation in Dynamic Scenes [19.810725397641406]
We propose a novel Dyna-Depthformer framework, which predicts scene depth and 3D motion field jointly.
Our contributions are two-fold. First, we leverage multi-view correlation through a series of self- and cross-attention layers in order to obtain enhanced depth feature representation.
Second, we propose a warping-based Motion Network to estimate the motion field of dynamic objects without using semantic prior.
arXiv Detail & Related papers (2023-01-14T09:43:23Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - Deep Probabilistic Feature-metric Tracking [27.137827823264942]
We propose a new framework to learn a pixel-wise deep feature map and a deep feature-metric uncertainty map.
CNN predicts a deep initial pose for faster and more reliable convergence.
Experimental results demonstrate state-of-the-art performances on the TUM RGB-D dataset and the 3D rigid object tracking dataset.
arXiv Detail & Related papers (2020-08-31T11:47:59Z) - Robust Ego and Object 6-DoF Motion Estimation and Tracking [5.162070820801102]
This paper proposes a robust solution to achieve accurate estimation and consistent track-ability for dynamic multi-body visual odometry.
A compact and effective framework is proposed leveraging recent advances in semantic instance-level segmentation and accurate optical flow estimation.
A novel formulation, jointly optimizing SE(3) motion and optical flow is introduced that improves the quality of the tracked points and the motion estimation accuracy.
arXiv Detail & Related papers (2020-07-28T05:12:56Z) - Benchmarking Unsupervised Object Representations for Video Sequences [111.81492107649889]
We compare the perceptual abilities of four object-centric approaches: ViMON, OP3, TBA and SCALOR.
Our results suggest that the architectures with unconstrained latent representations learn more powerful representations in terms of object detection, segmentation and tracking.
Our benchmark may provide fruitful guidance towards learning more robust object-centric video representations.
arXiv Detail & Related papers (2020-06-12T09:37:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.