Do Developers Adopt Green Architectural Tactics for ML-Enabled Systems? A Mining Software Repository Study
- URL: http://arxiv.org/abs/2410.06708v2
- Date: Thu, 02 Jan 2025 19:27:01 GMT
- Title: Do Developers Adopt Green Architectural Tactics for ML-Enabled Systems? A Mining Software Repository Study
- Authors: Vincenzo De Martino, Silverio MartÃnez-Fernández, Fabio Palomba,
- Abstract summary: Green AI advocates for reducing computational demands while still maintaining accuracy.
This paper addresses this gap by studying 168 open-source ML projects on GitHub.
It employs a novel large language model (LLM)-based mining mechanism to identify and analyze green strategies.
- Score: 10.997873336451498
- License:
- Abstract: As machine learning (ML) and artificial intelligence (AI) technologies become more widespread, concerns about their environmental impact are increasing due to the resource-intensive nature of training and inference processes. Green AI advocates for reducing computational demands while still maintaining accuracy. Although various strategies for creating sustainable ML systems have been identified, their real-world implementation is still underexplored. This paper addresses this gap by studying 168 open-source ML projects on GitHub. It employs a novel large language model (LLM)-based mining mechanism to identify and analyze green strategies. The findings reveal the adoption of established tactics that offer significant environmental benefits. This provides practical insights for developers and paves the way for future automation of sustainable practices in ML systems.
Related papers
- Intelligent Green Efficiency for Intrusion Detection [0.0]
This paper presents an assessment of different programming languages and Feature Selection (FS) methods to improve performance of AI.
Experiments were conducted using five ML models - Random Forest, XGBoost, LightGBM, Multi-Layer Perceptron, and Long Short-Term Memory.
Results demonstrated that FS plays an important role enhancing the computational efficiency of AI models without compromising detection accuracy.
arXiv Detail & Related papers (2024-11-11T15:01:55Z) - Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
In recent years, AI researchers and practitioners have introduced principles and guidelines to build systems that make reliable and trustworthy decisions.
In practice, a fundamental challenge arises when the system needs to be operationalized and deployed to evolve and operate in real-life environments continuously.
To address this challenge, Machine Learning Operations (MLOps) have emerged as a potential recipe for standardizing ML solutions in deployment.
arXiv Detail & Related papers (2024-10-28T09:34:08Z) - Innovating for Tomorrow: The Convergence of SE and Green AI [2.013374581642707]
Machine learning is changing the frontiers of existing software engineering processes.
We reflect on the impact of adopting environmentally friendly practices to create AI-enabled software systems.
arXiv Detail & Related papers (2024-06-26T07:47:04Z) - Open-world Machine Learning: A Review and New Outlooks [83.6401132743407]
This paper aims to provide a comprehensive introduction to the emerging open-world machine learning paradigm.
It aims to help researchers build more powerful AI systems in their respective fields, and to promote the development of artificial general intelligence.
arXiv Detail & Related papers (2024-03-04T06:25:26Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - A Synthesis of Green Architectural Tactics for ML-Enabled Systems [9.720968127923925]
We provide a catalog of 30 green architectural tactics for ML-enabled systems.
An architectural tactic is a high-level design technique to improve software quality.
To enhance transparency and facilitate their widespread use, we make the tactics available online in easily consumable formats.
arXiv Detail & Related papers (2023-12-15T08:53:45Z) - Real-world Machine Learning Systems: A survey from a Data-Oriented
Architecture Perspective [7.574538335342942]
Data-oriented Architecture (DOA) is an emerging concept that equips systems better for integrating ML models.
DOA extends current architectures to create data-driven, loosely coupled, decentralised, open systems.
This paper answers these questions by surveying real-world deployments of ML-based systems.
arXiv Detail & Related papers (2023-02-09T17:57:02Z) - Tiny Robot Learning: Challenges and Directions for Machine Learning in
Resource-Constrained Robots [57.27442333662654]
Machine learning (ML) has become a pervasive tool across computing systems.
Tiny robot learning is the deployment of ML on resource-constrained low-cost autonomous robots.
Tiny robot learning is subject to challenges from size, weight, area, and power (SWAP) constraints.
This paper gives a brief survey of the tiny robot learning space, elaborates on key challenges, and proposes promising opportunities for future work in ML system design.
arXiv Detail & Related papers (2022-05-11T19:36:15Z) - Towards Green Automated Machine Learning: Status Quo and Future
Directions [71.86820260846369]
AutoML is being criticised for its high resource consumption.
This paper proposes Green AutoML, a paradigm to make the whole AutoML process more environmentally friendly.
arXiv Detail & Related papers (2021-11-10T18:57:27Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.