Intelligent Green Efficiency for Intrusion Detection
- URL: http://arxiv.org/abs/2411.08069v1
- Date: Mon, 11 Nov 2024 15:01:55 GMT
- Title: Intelligent Green Efficiency for Intrusion Detection
- Authors: Pedro Pereira, Paulo Mendes, João Vitorino, Eva Maia, Isabel Praça,
- Abstract summary: This paper presents an assessment of different programming languages and Feature Selection (FS) methods to improve performance of AI.
Experiments were conducted using five ML models - Random Forest, XGBoost, LightGBM, Multi-Layer Perceptron, and Long Short-Term Memory.
Results demonstrated that FS plays an important role enhancing the computational efficiency of AI models without compromising detection accuracy.
- Score: 0.0
- License:
- Abstract: Artificial Intelligence (AI) has emerged in popularity recently, recording great progress in various industries. However, the environmental impact of AI is a growing concern, in terms of the energy consumption and carbon footprint of Machine Learning (ML) and Deep Learning (DL) models, making essential investigate Green AI, an attempt to reduce the climate impact of AI systems. This paper presents an assessment of different programming languages and Feature Selection (FS) methods to improve computation performance of AI focusing on Network Intrusion Detection (NID) and cyber-attack classification tasks. Experiments were conducted using five ML models - Random Forest, XGBoost, LightGBM, Multi-Layer Perceptron, and Long Short-Term Memory - implemented in four programming languages - Python, Java, R, and Rust - along with three FS methods - Information Gain, Recursive Feature Elimination, and Chi-Square. The obtained results demonstrated that FS plays an important role enhancing the computational efficiency of AI models without compromising detection accuracy, highlighting languages like Python and R, that benefit from a rich AI libraries environment. These conclusions can be useful to design efficient and sustainable AI systems that still provide a good generalization and a reliable detection.
Related papers
- Evaluation of Artificial Intelligence Methods for Lead Time Prediction in Non-Cycled Areas of Automotive Production [1.3499500088995464]
The present study examines the effectiveness of applying Artificial Intelligence methods in an automotive production environment.
Data structures are analyzed to identify contextual features and then preprocessed using one-hot encoding.
The research demonstrates that AI methods can be effectively applied to highly variable production data, adding business value.
arXiv Detail & Related papers (2025-01-13T13:28:03Z) - An Empirical Study on Automatically Detecting AI-Generated Source Code: How Far Are We? [8.0988059417354]
We propose a range of approaches to improve the performance of AI-generated code detection.
Our best model outperforms state-of-the-art AI-generated code detector (GPTSniffer) and achieves an F1 score of 82.55.
arXiv Detail & Related papers (2024-11-06T22:48:18Z) - Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
This study investigates the potential of feature attribution methods to filter out uninformative features in input data for regression problems.
We introduce a feature selection pipeline that combines Integrated Gradients with k-means clustering to select an optimal set of variables from the initial data space.
To validate the effectiveness of this approach, we apply it to a real-world industrial problem - blade vibration analysis in the development process of turbo machinery.
arXiv Detail & Related papers (2024-09-25T09:50:51Z) - Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
This article highlights a significant shift towards leveraging quantum computing techniques in processing large volumes of remote sensing data.
The proposed Quanv4EO model introduces a quanvolution method for preprocessing multi-dimensional EO data.
Key findings suggest that the proposed model not only maintains high precision in image classification but also shows improvements of around 5% in EO use cases.
arXiv Detail & Related papers (2024-07-24T09:11:34Z) - Explainable AI for Comparative Analysis of Intrusion Detection Models [20.683181384051395]
This research analyzes various machine learning models to the tasks of binary and multi-class classification for intrusion detection from network traffic.
We trained all models to the accuracy of 90% on the UNSW-NB15 dataset.
We also discover that Random Forest provides the best performance in terms of accuracy, time efficiency and robustness.
arXiv Detail & Related papers (2024-06-14T03:11:01Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
Edge artificial intelligence (Edge AI) is a promising solution to achieve connected intelligence.
This article presents a vision of autonomous edge AI systems that automatically organize, adapt, and optimize themselves to meet users' diverse requirements.
arXiv Detail & Related papers (2023-07-06T05:16:55Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
We propose developing task-oriented prompts and automatically utilizing large language models (LLMs) to automate the training pipeline.
We present the AutoML-GPT, which employs GPT as the bridge to diverse AI models and dynamically trains models with optimized hyper parameters.
This approach achieves remarkable results in computer vision, natural language processing, and other challenging areas.
arXiv Detail & Related papers (2023-05-04T02:09:43Z) - Learning to Walk Autonomously via Reset-Free Quality-Diversity [73.08073762433376]
Quality-Diversity algorithms can discover large and complex behavioural repertoires consisting of both diverse and high-performing skills.
Existing QD algorithms need large numbers of evaluations as well as episodic resets, which require manual human supervision and interventions.
This paper proposes Reset-Free Quality-Diversity optimization (RF-QD) as a step towards autonomous learning for robotics in open-ended environments.
arXiv Detail & Related papers (2022-04-07T14:07:51Z) - Understanding Neural Code Intelligence Through Program Simplification [3.9704927572880253]
We propose a model-agnostic approach to identify critical input features for models in code intelligence systems.
Our approach, SIVAND, uses simplification techniques that reduce the size of input programs of a CI model.
We believe that SIVAND's extracted features may help understand neural CI systems' predictions and learned behavior.
arXiv Detail & Related papers (2021-06-07T05:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.