Analysis of different disparity estimation techniques on aerial stereo image datasets
- URL: http://arxiv.org/abs/2410.06711v1
- Date: Wed, 9 Oct 2024 09:33:48 GMT
- Title: Analysis of different disparity estimation techniques on aerial stereo image datasets
- Authors: Ishan Narayan, Shashi Poddar,
- Abstract summary: This work analyses dense stereo correspondence analysis on aerial images using different techniques.
For traditional methods, we implemented the architecture of Stereo SGBM while using different cost functions.
Analysis of most of the methods in standard datasets has shown good performance, however in case of aerial dataset, not much benchmarking is available.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of aerial image datasets, dense stereo matching has gained tremendous progress. This work analyses dense stereo correspondence analysis on aerial images using different techniques. Traditional methods, optimization based methods and learning based methods have been implemented and compared here for aerial images. For traditional methods, we implemented the architecture of Stereo SGBM while using different cost functions to get an understanding of their performance on aerial datasets. Analysis of most of the methods in standard datasets has shown good performance, however in case of aerial dataset, not much benchmarking is available. Visual qualitative and quantitative analysis has been carried out for two stereo aerial datasets in order to compare different cost functions and techniques for the purpose of depth estimation from stereo images. Using existing pre-trained models, recent learning based architectures have also been tested on stereo pairs along with different cost functions in SGBM. The outputs and given ground truth are compared using MSE, SSIM and other error metrics.
Related papers
- Encoding Multi-level Dynamics in Effect Heterogeneity Estimation [3.4137115855910762]
This paper introduces Multi-scale Concatenation, a family of composable procedures that transform arbitrary single-scale CATE estimation algorithms into multi-scale algorithms.
We benchmark the performance of Multi-scale Concatenation on a CATE estimation pipeline combining Vision Transformer (ViT) models fine-tuned on satellite images.
We then apply the multi-scale method to two randomized controlled trials (RCTs) conducted in Peru and Uganda using Landsat satellite imagery.
arXiv Detail & Related papers (2024-11-04T14:47:48Z) - Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
We propose integrating deep features from pre-trained visual models with a statistical analysis model to achieve opinion-unaware BIQA (OU-BIQA)
Our proposed model exhibits superior consistency with human visual perception compared to state-of-the-art BIQA models.
arXiv Detail & Related papers (2024-05-29T06:09:34Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - An evaluation of Deep Learning based stereo dense matching dataset shift
from aerial images and a large scale stereo dataset [2.048226951354646]
We present a method for generating ground-truth disparity maps directly from Light Detection and Ranging (LiDAR) and images.
We evaluate 11 dense matching methods across datasets with diverse scene types, image resolutions, and geometric configurations.
arXiv Detail & Related papers (2024-02-19T20:33:46Z) - HawkI: Homography & Mutual Information Guidance for 3D-free Single Image to Aerial View [67.8213192993001]
We present HawkI, for synthesizing aerial-view images from text and an exemplar image.
HawkI blends the visual features from the input image within a pretrained text-to-2Dimage stable diffusion model.
At inference, HawkI employs a unique mutual information guidance formulation to steer the generated image towards faithfully replicating the semantic details of the input-image.
arXiv Detail & Related papers (2023-11-27T01:41:25Z) - Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo
Matching [77.133400999703]
Correlation based stereo matching has achieved outstanding performance.
Current methods with a fixed model do not work uniformly well across various datasets.
This paper proposes a new perspective to dynamically calculate correlation for robust stereo matching.
arXiv Detail & Related papers (2023-07-26T09:47:37Z) - A Comparative Study on Deep-Learning Methods for Dense Image Matching of
Multi-angle and Multi-date Remote Sensing Stereo Images [1.0152838128195467]
This paper provides an evaluation of four deep learning (DL) stereo matching methods through hundreds of multi-date multi-site satellite stereo pairs.
Our experiments show that E2E algorithms can achieve upper limits of geometric accuracies, while may not generalize well for unseen data.
All DL algorithms are robust to geometric configurations of stereo pairs and are less sensitive in comparison to the Census-SGM.
arXiv Detail & Related papers (2022-10-25T14:10:04Z) - MC-Blur: A Comprehensive Benchmark for Image Deblurring [127.6301230023318]
In most real-world images, blur is caused by different factors, e.g., motion and defocus.
We construct a new large-scale multi-cause image deblurring dataset (called MC-Blur)
Based on the MC-Blur dataset, we conduct extensive benchmarking studies to compare SOTA methods in different scenarios.
arXiv Detail & Related papers (2021-12-01T02:10:42Z) - Evaluation of Cross-View Matching to Improve Ground Vehicle Localization
with Aerial Perception [17.349420462716886]
Cross-view matching refers to the problem of finding the closest match for a given query ground view image to one from a database of aerial images.
In this paper, we evaluate cross-view matching for the task of localizing a ground vehicle over a longer trajectory.
arXiv Detail & Related papers (2020-03-13T23:59:07Z) - Leveraging Photogrammetric Mesh Models for Aerial-Ground Feature Point
Matching Toward Integrated 3D Reconstruction [19.551088857830944]
Integration of aerial and ground images has been proved as an efficient approach to enhance the surface reconstruction in urban environments.
Previous studies based on geometry-aware image rectification have alleviated this problem.
We propose a novel approach: leveraging photogrammetric mesh models for aerial-ground image matching.
arXiv Detail & Related papers (2020-02-21T01:47:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.