Utilizing Transfer Learning and pre-trained Models for Effective Forest Fire Detection: A Case Study of Uttarakhand
- URL: http://arxiv.org/abs/2410.06743v1
- Date: Wed, 9 Oct 2024 10:21:45 GMT
- Title: Utilizing Transfer Learning and pre-trained Models for Effective Forest Fire Detection: A Case Study of Uttarakhand
- Authors: Hari Prabhat Gupta, Rahul Mishra,
- Abstract summary: Forest fires pose a significant threat to the environment, human life, and property.
Traditional forest fire detection methods are often hindered by our reliability on manual observation and satellite imagery.
This paper emphasizes the role of transfer learning in enhancing forest fire detection in India.
- Score: 17.487540572548337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forest fires pose a significant threat to the environment, human life, and property. Early detection and response are crucial to mitigating the impact of these disasters. However, traditional forest fire detection methods are often hindered by our reliability on manual observation and satellite imagery with low spatial resolution. This paper emphasizes the role of transfer learning in enhancing forest fire detection in India, particularly in overcoming data collection challenges and improving model accuracy across various regions. We compare traditional learning methods with transfer learning, focusing on the unique challenges posed by regional differences in terrain, climate, and vegetation. Transfer learning can be categorized into several types based on the similarity between the source and target tasks, as well as the type of knowledge transferred. One key method is utilizing pre-trained models for efficient transfer learning, which significantly reduces the need for extensive labeled data. We outline the transfer learning process, demonstrating how researchers can adapt pre-trained models like MobileNetV2 for specific tasks such as forest fire detection. Finally, we present experimental results from training and evaluating a deep learning model using the Uttarakhand forest fire dataset, showcasing the effectiveness of transfer learning in this context.
Related papers
- Comprehensive and Comparative Analysis between Transfer Learning and Custom Built VGG and CNN-SVM Models for Wildfire Detection [1.8616107180090005]
This paper examines the efficiency and effectiveness of transfer learning in the context of wildfire detection.
Three purpose-built models -- Visual Geometry Group (VGG)-7, VGG-10, and Convolutional Neural Network (CNN)-Support Vector Machine(SVM) CNN-SVM -- are rigorously compared.
We trained and evaluated these models using a dataset that captures the complexities of wildfires.
arXiv Detail & Related papers (2024-11-12T20:30:23Z) - Towards Seamless Adaptation of Pre-trained Models for Visual Place Recognition [72.35438297011176]
We propose a novel method to realize seamless adaptation of pre-trained models for visual place recognition (VPR)
Specifically, to obtain both global and local features that focus on salient landmarks for discriminating places, we design a hybrid adaptation method.
Experimental results show that our method outperforms the state-of-the-art methods with less training data and training time.
arXiv Detail & Related papers (2024-02-22T12:55:01Z) - Improving Buoy Detection with Deep Transfer Learning for Mussel Farm
Automation [7.906113472259946]
The aquaculture sector in New Zealand is experiencing rapid expansion, with a particular emphasis on mussel exports.
As the demands of mussel farming operations continue to evolve, the integration of artificial intelligence and computer vision techniques is emerging as an effective approach to enhance operational efficiency.
This study delves into advancing buoy detection by leveraging deep learning methodologies for intelligent mussel farm monitoring and management.
arXiv Detail & Related papers (2023-08-18T01:53:47Z) - Unsupervised Wildfire Change Detection based on Contrastive Learning [1.53934570513443]
The accurate characterization of the severity of the wildfire event contributes to the characterization of the fuel conditions in fire-prone areas.
The aim of this study is to develop an autonomous system built on top of high-resolution multispectral satellite imagery, with an advanced deep learning method for detecting burned area change.
arXiv Detail & Related papers (2022-11-26T20:13:14Z) - An Exploration of Data Efficiency in Intra-Dataset Task Transfer for
Dialog Understanding [65.75873687351553]
This study explores the effects of varying quantities of target task training data on sequential transfer learning in the dialog domain.
Unintuitively, our data shows that often target task training data size has minimal effect on how sequential transfer learning performs compared to the same model without transfer learning.
arXiv Detail & Related papers (2022-10-21T04:36:46Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - Learning Invariant Representations across Domains and Tasks [81.30046935430791]
We propose a novel Task Adaptation Network (TAN) to solve this unsupervised task transfer problem.
In addition to learning transferable features via domain-adversarial training, we propose a novel task semantic adaptor that uses the learning-to-learn strategy to adapt the task semantics.
TAN significantly increases the recall and F1 score by 5.0% and 7.8% compared to recently strong baselines.
arXiv Detail & Related papers (2021-03-03T11:18:43Z) - Unsupervised Transfer Learning for Spatiotemporal Predictive Networks [90.67309545798224]
We study how to transfer knowledge from a zoo of unsupervisedly learned models towards another network.
Our motivation is that models are expected to understand complex dynamics from different sources.
Our approach yields significant improvements on three benchmarks fortemporal prediction, and benefits the target even from less relevant ones.
arXiv Detail & Related papers (2020-09-24T15:40:55Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z) - A Survey on Self-supervised Pre-training for Sequential Transfer
Learning in Neural Networks [1.1802674324027231]
Self-supervised pre-training for transfer learning is becoming an increasingly popular technique to improve state-of-the-art results using unlabeled data.
We provide an overview of the taxonomy for self-supervised learning and transfer learning, and highlight some prominent methods for designing pre-training tasks across different domains.
arXiv Detail & Related papers (2020-07-01T22:55:48Z) - Inter- and Intra-domain Knowledge Transfer for Related Tasks in Deep
Character Recognition [2.320417845168326]
Pre-training a deep neural network on the ImageNet dataset is a common practice for training deep learning models.
The technique of pre-training on one task and then retraining on a new one is called transfer learning.
In this paper we analyse the effectiveness of using deep transfer learning for character recognition tasks.
arXiv Detail & Related papers (2020-01-02T14:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.