Diff-FMT: Diffusion Models for Fluorescence Molecular Tomography
- URL: http://arxiv.org/abs/2410.06757v1
- Date: Wed, 9 Oct 2024 10:41:31 GMT
- Title: Diff-FMT: Diffusion Models for Fluorescence Molecular Tomography
- Authors: Qianqian Xue, Peng Zhang, Xingyu Liu, Wenjian Wang, Guanglei Zhang,
- Abstract summary: We propose a FMT reconstruction method based on a denoising diffusion probabilistic model (DDPM)
Through the step-by-step probability sampling mechanism, we achieve fine-grained reconstruction of the image, avoiding issues such as loss of image detail.
We show that Diff-FMT can achieve high-resolution reconstruction images without relying on large-scale datasets.
- Score: 16.950699640321936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fluorescence molecular tomography (FMT) is a real-time, noninvasive optical imaging technology that plays a significant role in biomedical research. Nevertheless, the ill-posedness of the inverse problem poses huge challenges in FMT reconstructions. Previous various deep learning algorithms have been extensively explored to address the critical issues, but they remain faces the challenge of high data dependency with poor image quality. In this paper, we, for the first time, propose a FMT reconstruction method based on a denoising diffusion probabilistic model (DDPM), termed Diff-FMT, which is capable of obtaining high-quality reconstructed images from noisy images. Specifically, we utilize the noise addition mechanism of DDPM to generate diverse training samples. Through the step-by-step probability sampling mechanism in the inverse process, we achieve fine-grained reconstruction of the image, avoiding issues such as loss of image detail that can occur with end-to-end deep-learning methods. Additionally, we introduce the fluorescence signals as conditional information in the model training to sample a reconstructed image that is highly consistent with the input fluorescence signals from the noisy images. Numerous experimental results show that Diff-FMT can achieve high-resolution reconstruction images without relying on large-scale datasets compared with other cutting-edge algorithms.
Related papers
- Learned Discrepancy Reconstruction and Benchmark Dataset for Magnetic Particle Imaging [3.7898596546142818]
Magnetic Particle Imaging (MPI) is an emerging imaging modality based on the magnetic response of superparamagnetic iron oxide nanoparticles.
One key challenge in the MPI image reconstruction task arises from its underlying noise model.
We introduce the Learned Discrepancy Approach, a novel learning-based reconstruction method for inverse problems.
arXiv Detail & Related papers (2025-01-09T21:21:06Z) - Improved Patch Denoising Diffusion Probabilistic Models for Magnetic Resonance Fingerprinting [7.379135816468852]
Magnetic Resonance Fingerprinting (MRF) is a time-efficient approach to quantitative MRI.
achieving accurate reconstructions remains challenging, particularly in highly accelerated and undersampled acquisitions.
We propose for the first time a conditional diffusion probabilistic model for MRF image reconstruction.
arXiv Detail & Related papers (2024-10-29T21:38:54Z) - A Flow-based Truncated Denoising Diffusion Model for Super-resolution Magnetic Resonance Spectroscopic Imaging [34.32290273033808]
This work introduces a Flow-based Truncated Denoising Diffusion Model for super-resolution MRSI.
It shortens the diffusion process by truncating the diffusion chain, and the truncated steps are estimated using a normalizing flow-based network.
We demonstrate that FTDDM outperforms existing generative models while speeding up the sampling process by over 9-fold.
arXiv Detail & Related papers (2024-10-25T03:42:35Z) - Denoising diffusion models for high-resolution microscopy image restoration [34.82692226532414]
We train a denoising diffusion probabilistic model (DDPM) to predict high-resolution images by conditioning the model on low-resolution information.
We show that our model achieves a performance that is better or similar to the previously best-performing methods, across four highly diverse datasets.
arXiv Detail & Related papers (2024-09-18T15:53:45Z) - Iterative CT Reconstruction via Latent Variable Optimization of Shallow Diffusion Models [1.4019041243188557]
We propose a novel computed tomography (CT) reconstruction method by combining the denoising diffusion probabilistic model with iterative CT reconstruction.
We demonstrated the effectiveness of the proposed method through the sparse-projection CT reconstruction of 1/10 projection data.
arXiv Detail & Related papers (2024-08-06T12:55:17Z) - TC-DiffRecon: Texture coordination MRI reconstruction method based on
diffusion model and modified MF-UNet method [2.626378252978696]
We propose a novel diffusion model-based MRI reconstruction method, named TC-DiffRecon, which does not rely on a specific acceleration factor for training.
We also suggest the incorporation of the MF-UNet module, designed to enhance the quality of MRI images generated by the model.
arXiv Detail & Related papers (2024-02-17T13:09:00Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Diffusion Reconstruction of Ultrasound Images with Informative
Uncertainty [5.375425938215277]
Enhancing ultrasound image quality involves balancing concurrent factors like contrast, resolution, and speckle preservation.
We propose a hybrid approach leveraging advances in diffusion models.
We conduct comprehensive experiments on simulated, in-vitro, and in-vivo data, demonstrating the efficacy of our approach.
arXiv Detail & Related papers (2023-10-31T16:51:40Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion [144.9653045465908]
We propose a novel fusion algorithm based on the denoising diffusion probabilistic model (DDPM)
Our approach yields promising fusion results in infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2023-03-13T04:06:42Z) - Complex-valued Retrievals From Noisy Images Using Diffusion Models [26.467188665404727]
In microscopy, sensors measure only real-valued intensities. Additionally, the sensor readouts are affected by Poissonian-distributed photon noise.
Traditional restoration algorithms aim to minimize the mean squared error (MSE) between the original and recovered images.
This often leads to blurry outcomes with poor perceptual quality.
arXiv Detail & Related papers (2022-12-06T18:57:59Z) - AT-DDPM: Restoring Faces degraded by Atmospheric Turbulence using
Denoising Diffusion Probabilistic Models [64.24948495708337]
Atmospheric turbulence causes significant degradation to image quality by introducing blur and geometric distortion.
Various deep learning-based single image atmospheric turbulence mitigation methods, including CNN-based and GAN inversion-based, have been proposed.
Denoising Diffusion Probabilistic Models (DDPMs) have recently gained some traction because of their stable training process and their ability to generate high quality images.
arXiv Detail & Related papers (2022-08-24T03:13:04Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z) - Unsupervised Denoising of Retinal OCT with Diffusion Probabilistic Model [0.2578242050187029]
We present a diffusion probabilistic model that is fully unsupervised to learn from noise instead of signal.
Our method can significantly improve the image quality with a simple working pipeline and a small amount of training data.
arXiv Detail & Related papers (2022-01-27T19:02:38Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
We propose a novel Texture Transformer Module (TTM) for accelerated MRI reconstruction.
We formulate the under-sampled data and reference data as queries and keys in a transformer.
The proposed TTM can be stacked on prior MRI reconstruction approaches to further improve their performance.
arXiv Detail & Related papers (2021-11-18T03:06:25Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
Deep learning methods have been shown to produce superior performance on MR image reconstruction.
These methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations.
We propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy.
arXiv Detail & Related papers (2021-03-03T03:04:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.