論文の概要: Identification of Nonparametric Dynamic Causal Structure and Latent Process in Climate System
- arxiv url: http://arxiv.org/abs/2501.12500v1
- Date: Tue, 21 Jan 2025 21:04:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:28:18.031415
- Title: Identification of Nonparametric Dynamic Causal Structure and Latent Process in Climate System
- Title(参考訳): 気候システムにおける非パラメトリック動的因果構造と潜時過程の同定
- Authors: Minghao Fu, Biwei Huang, Zijian Li, Yujia Zheng, Ignavier Ng, Yingyao Hu, Kun Zhang,
- Abstract要約: 我々は,観察された因果構造と潜在因果過程の両方を同時に再現する推定手法を開発した。
気候データを含む実験において、このアプローチは、気候システムに対する強力で深い理解を提供する。
- 参考スコア(独自算出の注目度): 22.738785224750952
- License:
- Abstract: The study of learning causal structure with latent variables has advanced the understanding of the world by uncovering causal relationships and latent factors, e.g., Causal Representation Learning (CRL). However, in real-world scenarios, such as those in climate systems, causal relationships are often nonparametric, dynamic, and exist among both observed variables and latent variables. These challenges motivate us to consider a general setting in which causal relations are nonparametric and unrestricted in their occurrence, which is unconventional to current methods. To solve this problem, with the aid of 3-measurement in temporal structure, we theoretically show that both latent variables and processes can be identified up to minor indeterminacy under mild assumptions. Moreover, we tackle the general nonlinear Causal Discovery (CD) from observations, e.g., temperature, as a specific task of learning independent representation, through the principle of functional equivalence. Based on these insights, we develop an estimation approach simultaneously recovering both the observed causal structure and latent causal process in a nontrivial manner. Simulation studies validate the theoretical foundations and demonstrate the effectiveness of the proposed methodology. In the experiments involving climate data, this approach offers a powerful and in-depth understanding of the climate system.
- Abstract(参考訳): 潜伏変数を用いた因果構造学習の研究は、因果関係と潜伏要因(例えば、因果表現学習(CRL))を明らかにすることによって、世界の理解を深めた。
しかし、気候システムのような現実のシナリオでは、因果関係はしばしば非パラメトリックであり、動的であり、観察された変数と潜伏変数の両方に存在する。
これらの課題は、因果関係が非パラメトリックであり、その発生に制限のない一般的な設定を考える動機となる。
この問題を解決するために、時間構造における3次元計測の助けを借りて、理論上は、潜伏変数と過程の両方が、軽度な仮定の下で小さな不確定性まで識別可能であることを示す。
さらに,関数同値性の原理を用いて,独立表現を学習する特定のタスクとして,観測,例えば温度等から一般非線形因果発見(CD)に取り組む。
これらの知見に基づいて、観測された因果構造と潜伏因果過程の両方を非自明な方法で同時に復元する推定手法を開発した。
シミュレーション研究は理論の基礎を検証し,提案手法の有効性を実証する。
気候データを含む実験において、このアプローチは、気候システムに対する強力で深い理解を提供する。
関連論文リスト
- Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
科学的研究はしばしば、システム内の高レベル変数の根底にある因果構造を理解しようとする。
科学者は通常、地理的に分布した温度測定などの低レベルの測定を収集する。
そこで本研究では,単一親の復号化による因果発見法を提案し,その上で下位の潜伏者と因果グラフを同時に学習する。
論文 参考訳(メタデータ) (2024-10-09T15:57:50Z) - Causal Temporal Representation Learning with Nonstationary Sparse Transition [22.6420431022419]
Causal Temporal Representation Learning (Ctrl) 法は、複雑な非定常時間列の時間的因果ダイナミクスを特定することを目的としている。
この研究は、人間の直感的な理解と整合したスパース遷移の仮定を採用し、理論的な観点から識別可能性の結果を提示している。
本稿では,非定常スパース遷移を用いた因果時間表現学習(CtrlNS)を提案する。
論文 参考訳(メタデータ) (2024-09-05T00:38:27Z) - Local Causal Structure Learning in the Presence of Latent Variables [16.88791886307876]
本稿では,変数がターゲットの直接的な原因や効果であるかどうかを判定する原理的手法を提案する。
実世界の合成データと実世界のデータによる実験結果から,本手法の有効性と有効性について検証した。
論文 参考訳(メタデータ) (2024-05-25T13:31:05Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discoveryは、観測データから因果構造を学習するための自動探索手法を見つけることを目的としている。
この論文は因果発見における2つの疑問に焦点をあてる: (i) k-三角形の忠実性の代替定義を提供すること (i) (i) はガウス分布の族に適用されるとき強い忠実性よりも弱いこと (ii) 修正版の強忠実性が成り立つという仮定のもとに。
論文 参考訳(メタデータ) (2023-08-15T01:23:42Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
推移性は潜在因果表現の識別性を阻害する重要な役割を担っている。
いくつかの軽微な仮定の下では、潜伏因果表現が自明な置換とスケーリングまで特定可能であることを示すことができる。
本稿では,その間の因果関係や因果関係を直接学習する構造的caUsAl変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2022-08-30T11:12:59Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
ICA(Independent component analysis)は、この目的を定式化し、実用的な応用のための推定手順を提供する手法の集合を指す。
潜伏変数は、潜伏機構をスパースに正則化すれば、置換まで復元可能であることを示す。
論文 参考訳(メタデータ) (2021-07-21T14:22:14Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z) - Causal Inference in Geoscience and Remote Sensing from Observational
Data [9.800027003240674]
経験的データの有限集合を用いて、因果関係の正しい方向を推定する。
我々は28の地球科学因果推論問題の集合でパフォーマンスを示す。
この基準はあらゆるケースで最先端の検出率を達成するが、一般的にノイズ源や歪みに対して堅牢である。
論文 参考訳(メタデータ) (2020-12-07T22:56:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。