論文の概要: Quantum Frequency Combs with Path Identity for Quantum Remote Sensing
- arxiv url: http://arxiv.org/abs/2410.07044v1
- Date: Wed, 9 Oct 2024 16:34:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 22:57:18.157312
- Title: Quantum Frequency Combs with Path Identity for Quantum Remote Sensing
- Title(参考訳): 量子リモートセンシングのためのパスアイデンティティを持つ量子周波数コム
- Authors: D. A. R. Dalvit, T. J. Volkoff, Y. -S. Choi, A. K. Azad, H. -T. Chen, P. W. Milonni,
- Abstract要約: 光子は、リモートセンシングのための量子プローブとして明らかな選択である。
既存のスキームは主に量子照明フレームワークに基づいており、最初の絡み合ったペアの単一の光子を格納するために量子メモリを必要とする。
本稿では,これらの課題に対処する新しい量子センシングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum sensing promises to revolutionize sensing applications by employing quantum states of light or matter as sensing probes. Photons are the clear choice as quantum probes for remote sensing because they can travel to and interact with a distant target. Existing schemes are mainly based on the quantum illumination framework, which requires a quantum memory to store a single photon of an initially entangled pair until its twin reflects off a target and returns for final correlation measurements. Existing demonstrations are limited to tabletop experiments, and expanding the sensing range faces various roadblocks, including long-time quantum storage and photon loss and noise when transmitting quantum signals over long distances. We propose a novel quantum sensing framework that addresses these challenges using quantum frequency combs with path identity for remote sensing of signatures (``qCOMBPASS"). The combination of one key quantum phenomenon and two quantum resources, namely quantum induced coherence by path identity, quantum frequency combs, and two-mode squeezed light, allows for quantum remote sensing without requiring a quantum memory. The proposed scheme is akin to a quantum radar based on entangled frequency comb pairs that uses path identity to detect/range/sense a remote target of interest by measuring pulses of one comb in the pair that never flew to target, but that contains target information ``teleported" by quantum-induced coherence from the other comb in the pair that did fly to target but is not detected.
- Abstract(参考訳): 量子センシングは、センサープローブとして光や物質の量子状態を利用することによって、センシングアプリケーションに革命をもたらすことを約束する。
光子は、リモートセンシングのための量子プローブとして明らかな選択である。
既存のスキームは主に量子照明フレームワークに基づいており、量子メモリは、ツインがターゲットを反射して最終的な相関測定を行うまで、最初の絡み合ったペアの1つの光子を保存する必要がある。
既存の実証はテーブルトップ実験に限られており、長距離量子ストレージや光子損失、長距離で量子信号を伝送する際のノイズなど様々な障害に直面している。
本稿では、これらの課題に対処する新しい量子センシングフレームワークを提案する。このフレームワークは、1つの鍵量子現象と2つの量子リソース、すなわち、経路アイデンティティによる量子誘導コヒーレンス、量子周波数コム、および2モード圧縮光の組み合わせにより、量子メモリを必要とせずに量子リモートセンシングが可能となる。提案手法は、経路アイデンティティを用いて、ターゲットに到達しないペア内の1つのコムのパルスを計測して、関心の標的を検知・レンジする量子レーダーに類似している。
関連論文リスト
- Quantum Teleportation with Telecom Photons from Remote Quantum Emitters [0.0]
グローバルな量子インターネットの探求は、非常に優れた量子ハードウェアを必要とするスケーラブルなネットワークの実現に基づいている。
ここでは、最も有望なプラットフォームの一つである半導体量子ドットを用いたフルフォトニック量子テレポーテーションを実現する。
2つの分極保存量子周波数変換器を用いて、トリガ源間の周波数ミスマッチを消去する。
論文 参考訳(メタデータ) (2024-11-19T22:42:36Z) - Enhanced quantum state transfer: Circumventing quantum chaotic behavior [35.74056021340496]
2次元量子ネットワークにおける少数粒子量子状態の転送方法を示す。
提案手法は,分散量子プロセッサやレジスタを接続する短距離量子通信を実現する方法である。
論文 参考訳(メタデータ) (2024-02-01T19:00:03Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
シリコン-ゲルマニウムヘテロ構造におけるゲート定義量子ドットは、量子計算とシミュレーションのための魅力的なプラットフォームとなっている。
ひずみゲルマニウム二重量子井戸におけるゲート定義垂直2重量子ドットの動作を実証する。
課題と機会を議論し、量子コンピューティングと量子シミュレーションの潜在的な応用について概説する。
論文 参考訳(メタデータ) (2023-05-23T13:42:36Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
長距離における量子状態の絡み合いは、量子コンピューティング、量子通信、および量子センシングを増強することができる。
過去20年間で、高忠実度、高効率、長期保存、有望な多重化機能を備えた量子光学記憶が開発された。
論文 参考訳(メタデータ) (2023-04-19T03:18:51Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
ニオブ酸リチウム薄膜で作製したフォトニック集積回路について述べる。
我々は2階非線形性を用いてポンプ光と同じ周波数で圧縮状態を生成し、回路制御と電気光学によるセンシングを実現する。
このようなチップ上のフォトニクスシステムは、低消費電力で動作し、必要なすべての機能を1つのダイに統合することで、量子光学センサーの新たな機会が開けることを期待している。
論文 参考訳(メタデータ) (2022-12-19T18:46:33Z) - Experimental Multi-state Quantum Discrimination in the Frequency Domain
with Quantum Dot Light [40.96261204117952]
本研究では,8つの非直交状態間で最適な識別を行うために,時間多重化戦略を用いたプロトコルの実験的実現について述べる。
この実験は、カスタム設計のバルク光学分析装置と、ほぼ決定論的ソリッドステートソースによって生成される単一光子の上に構築された。
我々の研究は、より複雑な応用の道を切り開いて、高次元量子符号化および復号化操作への新しいアプローチを提供する。
論文 参考訳(メタデータ) (2022-09-17T12:59:09Z) - Detection of arbitrary quantum correlations via synthesized quantum
channels [16.1155239067513]
逐次弱測定に基づく量子センシング手法を用いて任意の種類の量子相関の抽出を実証する。
核スピンターゲットの2次および4次相関を別の核スピンセンサで抽出することに成功した。
量子相関の完全な特徴付けは、量子多体系を理解するための新しいツールを提供する。
論文 参考訳(メタデータ) (2022-06-13T02:27:17Z) - On-chip spin-photon entanglement based on single-photon scattering [2.4567119332161234]
我々は、入射光子と静止量子ドットスピン量子ビットの間のオンチップエンタングゲートを実証する。
結果は、フォトニックエンタングルメント生成とオンチップ量子論理の両方が可能な量子ノードを実現するための大きなステップである。
論文 参考訳(メタデータ) (2022-05-25T15:14:28Z) - Dynamical photon-photon interaction mediated by a quantum emitter [1.9677315976601693]
単一光子は量子科学と技術の主要なプラットフォームを構成する。
量子フォトニクスの主な課題は、どのように高度な絡み合った資源状態と効率的な光物質界面を生成するかである。
我々は、単一光子波束間の量子非線形相互作用を実現するために、単一量子エミッタとナノフォトニック導波路との効率的でコヒーレントな結合を利用する。
論文 参考訳(メタデータ) (2021-12-13T17:33:30Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
決定論的に作成された中性原子の2次元配列に基づくプログラマブル量子シミュレータを実証する。
我々は高忠実度反強磁性状態の生成と特徴付けによりシステムをベンチマークする。
次に、相互作用とコヒーレントレーザー励起の間の相互作用から生じるいくつかの新しい量子相を作成し、研究する。
論文 参考訳(メタデータ) (2020-12-22T19:00:04Z) - Quantum key distribution with entangled photons generated on-demand by a
quantum dot [0.0]
エンタングルメントベースのプロトコルは、追加のセキュリティ層を提供し、量子リピータで好意的にスケールする。
2つの量子チャネルアプローチによるEkert量子鍵分配プロトコルを実験的に実証した。
我々のフィールドスタディは、量子ドットの絡み合った光子源が実験以上の実験を行う準備ができていることを強調している。
論文 参考訳(メタデータ) (2020-07-24T18:21:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。