Data Selection via Optimal Control for Language Models
- URL: http://arxiv.org/abs/2410.07064v1
- Date: Wed, 9 Oct 2024 17:06:57 GMT
- Title: Data Selection via Optimal Control for Language Models
- Authors: Yuxian Gu, Li Dong, Hongning Wang, Yaru Hao, Qingxiu Dong, Furu Wei, Minlie Huang,
- Abstract summary: This work investigates the selection of high-quality pre-training data from massive corpora to enhance LMs' capabilities for downstream usage.
We introduce PMP-based Data Selection (PDS), a framework that approximates optimal data selection by solving the PMP conditions.
The benefits of PDS extend to 400B models trained on 10T tokens, as evidenced by the extrapolation of the test loss curves according to the Scaling Laws.
- Score: 134.67665351539725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work investigates the selection of high-quality pre-training data from massive corpora to enhance LMs' capabilities for downstream usage. We formulate data selection as a generalized Optimal Control problem, which can be solved theoretically by Pontryagin's Maximum Principle (PMP), yielding a set of necessary conditions that characterize the relationship between optimal data selection and LM training dynamics. Based on these theoretical results, we introduce PMP-based Data Selection (PDS), a framework that approximates optimal data selection by solving the PMP conditions. In our experiments, we adopt PDS to select data from CommmonCrawl and show that the PDS-selected corpus accelerates the learning of LMs and constantly boosts their performance on a wide range of downstream tasks across various model sizes. Moreover, the benefits of PDS extend to ~400B models trained on ~10T tokens, as evidenced by the extrapolation of the test loss curves according to the Scaling Laws. PDS also improves data utilization when the pre-training data is limited, by reducing the data demand by 1.8 times, which mitigates the quick exhaustion of available web-crawled corpora. Our code, data, and model checkpoints can be found in https://github.com/microsoft/LMOps/tree/main/data_selection.
Related papers
- TSDS: Data Selection for Task-Specific Model Finetuning [39.19448080265558]
The efficacy of task-specific finetuning largely depends on the selection of appropriate training data.
We present TSDS (Task-Specific Data Selection), a framework to select data for task-specific model finetuning.
We show that instruction tuning using data selected by our method with a 1% selection ratio often outperforms using the full dataset.
arXiv Detail & Related papers (2024-10-15T05:54:17Z) - Improving Pretraining Data Using Perplexity Correlations [56.41097718862742]
We build a new statistical framework for data selection centered around estimates of perplexity-benchmark correlations.
In controlled pretraining experiments at the 160M parameter scale on 8 benchmarks, our approach outperforms DSIR on every benchmark.
arXiv Detail & Related papers (2024-09-09T17:23:29Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
Standard practice is to filter for examples that match human notions of data quality.
We find that selecting according to similarity with "high quality" data sources may not increase (and can even hurt) performance compared to randomly selecting data.
Our framework avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks.
arXiv Detail & Related papers (2024-01-23T17:22:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.