JPEG Inspired Deep Learning
- URL: http://arxiv.org/abs/2410.07081v1
- Date: Wed, 9 Oct 2024 17:23:54 GMT
- Title: JPEG Inspired Deep Learning
- Authors: Ahmed H. Salamah, Kaixiang Zheng, Yiwen Liu, En-Hui Yang,
- Abstract summary: Well-crafted JPEG compression can actually improve the performance of deep learning (DL)
We propose JPEG-DL, a novel DL framework that prepends any underlying DNN architecture with a trainable JPEG compression layer.
- Score: 4.958744940097937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although it is traditionally believed that lossy image compression, such as JPEG compression, has a negative impact on the performance of deep neural networks (DNNs), it is shown by recent works that well-crafted JPEG compression can actually improve the performance of deep learning (DL). Inspired by this, we propose JPEG-DL, a novel DL framework that prepends any underlying DNN architecture with a trainable JPEG compression layer. To make the quantization operation in JPEG compression trainable, a new differentiable soft quantizer is employed at the JPEG layer, and then the quantization operation and underlying DNN are jointly trained. Extensive experiments show that in comparison with the standard DL, JPEG-DL delivers significant accuracy improvements across various datasets and model architectures while enhancing robustness against adversarial attacks. Particularly, on some fine-grained image classification datasets, JPEG-DL can increase prediction accuracy by as much as 20.9%. Our code is available on https://github.com/JpegInspiredDl/JPEG-Inspired-DL.git.
Related papers
- JDEC: JPEG Decoding via Enhanced Continuous Cosine Coefficients [17.437568540883106]
We propose a practical approach to JPEG image decoding, utilizing a local implicit neural representation with continuous cosine formulation.
Our proposed network achieves state-of-the-art performance in flexible color image JPEG artifact removal tasks.
arXiv Detail & Related papers (2024-04-03T03:28:04Z) - Learned Lossless Compression for JPEG via Frequency-Domain Prediction [50.20577108662153]
We propose a novel framework for learned lossless compression of JPEG images.
To enable learning in the frequency domain, DCT coefficients are partitioned into groups to utilize implicit local redundancy.
An autoencoder-like architecture is designed based on the weight-shared blocks to realize entropy modeling of grouped DCT coefficients.
arXiv Detail & Related papers (2023-03-05T13:15:28Z) - Practical Learned Lossless JPEG Recompression with Multi-Level
Cross-Channel Entropy Model in the DCT Domain [10.655855413391324]
We propose a deep learning based JPEG recompression method that operates on DCT domain.
Experiments show that our method achieves state-of-the-art performance compared with traditional JPEG recompression methods.
arXiv Detail & Related papers (2022-03-30T14:36:13Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Towards Flexible Blind JPEG Artifacts Removal [73.46374658847675]
We propose a flexible blind convolutional neural network, namely FBCNN, that can predict the adjustable quality factor to control the trade-off between artifacts removal and details preservation.
Our proposed FBCNN achieves favorable performance against state-of-the-art methods in terms of both quantitative metrics and visual quality.
arXiv Detail & Related papers (2021-09-29T17:12:10Z) - MBRS : Enhancing Robustness of DNN-based Watermarking by Mini-Batch of
Real and Simulated JPEG Compression [40.944632292011846]
We propose a novel end-to-end training architecture, which utilize Mini-Batch of Real and Simulated JPEG compression (MBRS) to enhance the JPEG robustness.
Our models achieve a bit error rate less than 0.01% for extracted messages, with PSNR larger than 36 for the encoded images, which shows the well-enhanced robustness against JPEG attack.
arXiv Detail & Related papers (2021-08-18T15:47:37Z) - Towards Robust Data Hiding Against (JPEG) Compression: A
Pseudo-Differentiable Deep Learning Approach [78.05383266222285]
It is still an open challenge to achieve the goal of data hiding that can be against these compressions.
Deep learning has shown large success in data hiding, while non-differentiability of JPEG makes it challenging to train a deep pipeline for improving robustness against lossy compression.
In this work, we propose a simple yet effective approach to address all the above limitations at once.
arXiv Detail & Related papers (2020-12-30T12:30:09Z) - Learning to Improve Image Compression without Changing the Standard
Decoder [100.32492297717056]
We propose learning to improve the encoding performance with the standard decoder.
Specifically, a frequency-domain pre-editing method is proposed to optimize the distribution of DCT coefficients.
We do not modify the JPEG decoder and therefore our approach is applicable when viewing images with the widely used standard JPEG decoder.
arXiv Detail & Related papers (2020-09-27T19:24:42Z) - Quantization Guided JPEG Artifact Correction [69.04777875711646]
We develop a novel architecture for artifact correction using the JPEG files quantization matrix.
This allows our single model to achieve state-of-the-art performance over models trained for specific quality settings.
arXiv Detail & Related papers (2020-04-17T00:10:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.