論文の概要: Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning
- arxiv url: http://arxiv.org/abs/2410.07163v3
- Date: Fri, 07 Feb 2025 18:34:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:54:45.014214
- Title: Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning
- Title(参考訳): 単純さの優位性: LLMアンラーニングにおける否定的選好最適化の再考
- Authors: Chongyu Fan, Jiancheng Liu, Licong Lin, Jinghan Jia, Ruiqi Zhang, Song Mei, Sijia Liu,
- Abstract要約: 本研究は、不要なデータの影響を取り除くことを目的として、大規模言語モデル(LLM)アンラーニングの問題を研究する。
未学習の需要が増えているにもかかわらず、技術的に地平線を画した最適化フレームワークは欠如している。
我々はSimNPOと呼ばれるシンプルで効果的なアンラーニング最適化フレームワークを提案し、参照モデルへの依存をなくすことによる「単純さ」がアンラーニングの恩恵をもたらすことを示した。
- 参考スコア(独自算出の注目度): 27.991291785091736
- License:
- Abstract: This work studies the problem of large language model (LLM) unlearning, aiming to remove unwanted data influences (e.g., copyrighted or harmful content) while preserving model utility. Despite the increasing demand for unlearning, a technically-grounded optimization framework is lacking. Gradient ascent (GA)-type methods, though widely used, are suboptimal as they reverse the learning process without controlling optimization divergence (i.e., deviation from the pre-trained state), leading to risks of over-forgetting and potential model collapse. Negative preference optimization (NPO) has been proposed to address this issue and is considered one of the state-of-the-art LLM unlearning approaches. In this work, we revisit NPO and identify another critical issue: reference model bias. This bias arises from using the reference model (i.e., the model prior to unlearning) to evaluate the unlearning success, which can compromise NPO's effectiveness. Specifically, it leads to (a) uneven allocation of optimization power across forget data with varying difficulty levels and (b) ineffective gradient weight smoothing during the early stages of unlearning optimization. To overcome these challenges, we propose a simple yet effective unlearning optimization framework, called SimNPO, showing that `simplicity' in removing the reliance on a reference model (through the lens of simple preference optimization) benefits unlearning. We provide deeper insights into SimNPO's advantages through an analysis based on mixtures of Markov chains. Extensive experiments further validate SimNPO's efficacy on benchmarks like TOFU and MUSE, as well as its robustness against relearning attacks. Codes are available at https://github.com/OPTML-Group/Unlearn-Simple.
- Abstract(参考訳): 本研究は,大規模言語モデル(LLM)の未学習の問題について検討し,モデルユーティリティを維持しながら,望ましくないデータの影響(著作権や有害コンテンツなど)を除去することを目的とする。
未学習の需要が増えているにもかかわらず、技術的に地平線を画した最適化フレームワークは欠如している。
GA(Gradient Ascent)型の手法は広く用いられているが、最適化の偏差(事前学習状態からの逸脱)を制御せずに学習過程を逆転させ、過剰な鍛造と潜在的なモデル崩壊のリスクをもたらす。
負の選好最適化(NPO)はこの問題に対処するために提案され、最先端のLLMアンラーニング手法の1つと考えられている。
本研究では、NPOを再検討し、別の重要な問題である参照モデルバイアスを特定する。
このバイアスは、NPOの有効性を損なう可能性のある未学習の成功を評価するために、参照モデル(すなわち、アンラーニング前のモデル)を使用することから生じる。
特にそれは
(a)難易度が異なる忘れデータにまたがる最適化力を不均一に割り当てること
(b)非学習最適化の初期段階における非効率な勾配重みの平滑化
これらの課題を克服するために、SimNPOと呼ばれるシンプルで効果的な未学習最適化フレームワークを提案する。
我々はマルコフ連鎖の混合に基づく解析を通じて、SimNPOの利点についてより深い知見を提供する。
大規模な実験により、TOFUやMUSEのようなベンチマークでのSimNPOの有効性が検証され、また再学習攻撃に対する堅牢性も検証された。
コードはhttps://github.com/OPTML-Group/Unlearn-Simpleで入手できる。
関連論文リスト
- Feasible Learning [78.6167929413604]
本稿では,サンプル中心の学習パラダイムであるFeasible Learning(FL)を紹介する。
大規模言語モデルにおける画像分類, 年齢回帰, 好みの最適化といった経験的分析により, FLを用いて訓練したモデルでは, 平均的性能に限界があるものの, ERMと比較して改善された尾の挙動を示しながらデータから学習できることが実証された。
論文 参考訳(メタデータ) (2025-01-24T20:39:38Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - Alternate Preference Optimization for Unlearning Factual Knowledge in Large Language Models [2.0962367975513496]
機械学習は、特定のトレーニングデータの影響をモデルから効率的に排除することを目的としている。
既存の未学習手法は, 無視集合に関連する応答を抑制するために, 負のフィードバックのみに頼っている。
本稿では,AltPO(Alternate Preference Optimization)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-20T13:05:07Z) - Self-Evolutionary Large Language Models through Uncertainty-Enhanced Preference Optimization [9.618391485742968]
反復的選好最適化は、最近、大規模言語モデル(LLM)のデファクトトレーニングパラダイムの1つになっている。
我々は、信頼性の高いフィードバックでLLMを自己進化させる不確実性のあるtextbfPreference textbfOptimizationフレームワークを提案する。
筆者らのフレームワークは,ノイズ問題を大幅に軽減し,反復的選好最適化の性能を向上させる。
論文 参考訳(メタデータ) (2024-09-17T14:05:58Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - Negative Preference Optimization: From Catastrophic Collapse to Effective Unlearning [28.059563581973432]
LLM(Large Language Models)は、事前トレーニング中に機密性のある、プライベートな、あるいは著作権のあるデータを持つことが多い。
LLMは、事前学習されたモデルから望ましくないデータの影響を取り除くことを目的としている。
我々は、ターゲットデータセットを効率的に解放できる単純なアライメントにインスパイアされた方法として、NPO(Negative Preference Optimization)を提案する。
論文 参考訳(メタデータ) (2024-04-08T21:05:42Z) - Model-based Offline Imitation Learning with Non-expert Data [7.615595533111191]
本稿では,最適条件と最適条件の両方で収集されたデータセットを活用する,スケーラブルなモデルベースオフライン模倣学習アルゴリズムフレームワークを提案する。
提案手法は, シミュレーションされた連続制御領域上での低データ構造における振舞いクローンよりも優れることを示す。
論文 参考訳(メタデータ) (2022-06-11T13:08:08Z) - Pessimistic Q-Learning for Offline Reinforcement Learning: Towards
Optimal Sample Complexity [51.476337785345436]
有限水平マルコフ決定過程の文脈におけるQ-ラーニングの悲観的変種について検討する。
ほぼ最適サンプル複雑性を実現するために,分散再現型悲観的Q-ラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-28T15:39:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。