Learning a Probabilistic Strategy for Computational Imaging Sensor
Selection
- URL: http://arxiv.org/abs/2003.10424v1
- Date: Mon, 23 Mar 2020 17:52:17 GMT
- Title: Learning a Probabilistic Strategy for Computational Imaging Sensor
Selection
- Authors: He Sun, Adrian V. Dalca and Katherine L. Bouman
- Abstract summary: We propose a physics-constrained, fully differentiable, autoencoder that learns a probabilistic sensor-sampling strategy for optimized sensor design.
The proposed method learns a system's preferred sampling distribution that characterizes the correlations between different sensor selections as a binary, fully-connected Ising model.
- Score: 16.553234762932938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimized sensing is important for computational imaging in low-resource
environments, when images must be recovered from severely limited measurements.
In this paper, we propose a physics-constrained, fully differentiable,
autoencoder that learns a probabilistic sensor-sampling strategy for optimized
sensor design. The proposed method learns a system's preferred sampling
distribution that characterizes the correlations between different sensor
selections as a binary, fully-connected Ising model. The learned probabilistic
model is achieved by using a Gibbs sampling inspired network architecture, and
is trained end-to-end with a reconstruction network for efficient co-design.
The proposed framework is applicable to sensor selection problems in a variety
of computational imaging applications. In this paper, we demonstrate the
approach in the context of a very-long-baseline-interferometry (VLBI) array
design task, where sensor correlations and atmospheric noise present unique
challenges. We demonstrate results broadly consistent with expectation, and
draw attention to particular structures preferred in the telescope array
geometry that can be leveraged to plan future observations and design array
expansions.
Related papers
- Analysis and Optimization of Seismic Monitoring Networks with Bayesian Optimal Experiment Design [0.0]
Bayesian optimal experimental design (OED) seeks to identify data, sensor configurations, or experiments which can optimally reduce uncertainty.
Information theory guides OED by formulating the choice of experiment or sensor placement as an optimization problem.
In this work, we develop the framework necessary to use Bayesian OED to optimize a sensor network's ability to locate seismic events.
arXiv Detail & Related papers (2024-09-27T04:45:27Z) - Exploring End-to-end Differentiable Neural Charged Particle Tracking -- A Loss Landscape Perspective [0.0]
We propose an E2E differentiable decision-focused learning scheme for particle tracking.
We show that differentiable variations of discrete assignment operations allows for efficient network optimization.
We argue that E2E differentiability provides, besides the general availability of gradient information, an important tool for robust particle tracking to mitigate prediction instabilities.
arXiv Detail & Related papers (2024-07-18T11:42:58Z) - Optimizing Sensor Network Design for Multiple Coverage [0.9668407688201359]
We introduce a new objective function for the greedy (next-best-view) algorithm to design efficient and robust sensor networks.
We also introduce a Deep Learning model to accelerate the algorithm for near real-time computations.
arXiv Detail & Related papers (2024-05-15T05:13:20Z) - Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks [66.18765335695414]
We consider a joint device selection and aggregate beamforming design with the objectives of minimizing the aggregate error and maximizing the number of selected devices.
To tackle the problems in a cost-effective manner, we propose a random aggregate beamforming-based scheme.
We additionally use analysis to study the obtained aggregate error and the number of the selected devices when the number of devices becomes large.
arXiv Detail & Related papers (2024-02-20T23:59:45Z) - Model-aware reinforcement learning for high-performance Bayesian
experimental design in quantum metrology [0.5461938536945721]
Quantum sensors offer control flexibility during estimation by allowing manipulation by the experimenter across various parameters.
We introduce a versatile procedure capable of optimizing a wide range of problems in quantum metrology, estimation, and hypothesis testing.
We combine model-aware reinforcement learning (RL) with Bayesian estimation based on particle filtering.
arXiv Detail & Related papers (2023-12-28T12:04:15Z) - A distributed neural network architecture for dynamic sensor selection
with application to bandwidth-constrained body-sensor networks [53.022158485867536]
We propose a dynamic sensor selection approach for deep neural networks (DNNs)
It is able to derive an optimal sensor subset selection for each specific input sample instead of a fixed selection for the entire dataset.
We show how we can use this dynamic selection to increase the lifetime of a wireless sensor network (WSN) by imposing constraints on how often each node is allowed to transmit.
arXiv Detail & Related papers (2023-08-16T14:04:50Z) - InVAErt networks: a data-driven framework for model synthesis and
identifiability analysis [0.0]
inVAErt is a framework for data-driven analysis and synthesis of physical systems.
It uses a deterministic decoder to represent the forward and inverse maps, a normalizing flow to capture the probabilistic distribution of system outputs, and a variational encoder to learn a compact latent representation for the lack of bijectivity between inputs and outputs.
arXiv Detail & Related papers (2023-07-24T07:58:18Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
We present a novel approach that advances the state of the art on pixel-level prediction in a fundamental aspect, i.e. structured multi-scale features learning and fusion.
We propose a probabilistic graph attention network structure based on a novel Attention-Gated Conditional Random Fields (AG-CRFs) model for learning and fusing multi-scale representations in a principled manner.
arXiv Detail & Related papers (2021-01-08T04:14:29Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.