IterGen: Iterative Semantic-aware Structured LLM Generation with Backtracking
- URL: http://arxiv.org/abs/2410.07295v2
- Date: Sun, 02 Mar 2025 01:39:57 GMT
- Title: IterGen: Iterative Semantic-aware Structured LLM Generation with Backtracking
- Authors: Shubham Ugare, Rohan Gumaste, Tarun Suresh, Gagandeep Singh, Sasa Misailovic,
- Abstract summary: Large Language Models (LLMs) are widely used for tasks such as natural language and code generation.<n>Their outputs often suffer from issues like hallucination, toxicity, and incorrect results.<n>Current libraries for structured LLM generation rely on left-to-right decoding without support for backtracking.<n>IterGen enables users to move both forward and backward within the generated output based on grammar symbols.
- Score: 5.174301428591665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are widely used for tasks such as natural language and code generation, but their outputs often suffer from issues like hallucination, toxicity, and incorrect results. Current libraries for structured LLM generation rely on left-to-right decoding without support for backtracking, limiting the ability to correct or refine outputs mid-generation. To address this, we introduce IterGen, a user-friendly library for iterative, grammar-guided LLM generation that enables users to move both forward and backward within the generated output based on grammar symbols. By leveraging a symbol-to-position mapping and maintaining the key-value (KV) cache state, IterGen ensures efficient and structured generation while allowing for corrections during the process. We demonstrate IterGen's effectiveness in two important applications: reducing privacy leakage in LLM outputs and improving the accuracy of LLM-generated SQL and Vega-Lite queries. Our code and additional resources are available at https://structuredllm.com.
Related papers
- Real-time Verification and Refinement of Language Model Text Generation [60.04718679054704]
Large language models (LLMs) have shown remarkable performance across a wide range of natural language tasks.
A critical challenge remains in that they sometimes generate factually incorrect answers.
We propose Streaming-VR, a novel approach designed to enhance the efficiency of verification and refinement of LLM outputs.
arXiv Detail & Related papers (2025-01-14T03:59:48Z) - Language Models can Self-Lengthen to Generate Long Texts [74.96074422345806]
This paper introduces an innovative iterative training framework called Self-Lengthen.
It leverages only the intrinsic knowledge and skills of Large Language Models without the need for auxiliary data or proprietary models.
Experiments on benchmarks and human evaluations show that Self-Lengthen outperforms existing methods in long-text generation.
arXiv Detail & Related papers (2024-10-31T13:47:10Z) - Automatic Generation of Benchmarks and Reliable LLM Judgment for Code Tasks [0.8274693573069442]
This work introduces a methodology to generate and evaluate LaaJ implementations, utilizing an automatically generated benchmark.
The benchmark is used both to develop and validate the LaaJs and to validate and test the LLM code related solution using the LaaJs.
Our approach enables the creation of high quality code task solutions.
arXiv Detail & Related papers (2024-10-28T14:34:36Z) - RAC: Efficient LLM Factuality Correction with Retrieval Augmentation [8.207682890286957]
Large Language Models (LLMs) exhibit impressive results across a wide range of natural language processing (NLP) tasks, yet they can often produce factually incorrect outputs.
This paper introduces a simple but effective low-latency post-correction method, textbfRetrieval Augmented Correction (RAC), aimed at enhancing the factual performance of LLMs without requiring additional fine-tuning.
arXiv Detail & Related papers (2024-10-21T06:11:38Z) - Combining LLM Code Generation with Formal Specifications and Reactive Program Synthesis [0.7580487359358722]
Large Language Models (LLMs) struggle with accuracy and are unsuitable for high-risk applications.
We introduce a solution that divides the code generation into two parts; one to be handled by an LLM and one to be handled by formal methods-based program synthesis.
arXiv Detail & Related papers (2024-09-18T15:59:06Z) - InverseCoder: Unleashing the Power of Instruction-Tuned Code LLMs with Inverse-Instruct [43.7550233177368]
We propose INVERSE-INSTRUCT, which summarizes instructions from code snippets instead of the reverse.
We present a series of code LLMs named InverseCoder, which surpasses the performance of the original code LLMs on a wide range of benchmarks.
arXiv Detail & Related papers (2024-07-08T08:00:05Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
We introduce CodecLM, a framework for adaptively generating high-quality synthetic data for instruction-following abilities.
We first encode seed instructions into metadata, which are concise keywords generated on-the-fly to capture the target instruction distribution.
We also introduce Self-Rubrics and Contrastive Filtering during decoding to tailor data-efficient samples.
arXiv Detail & Related papers (2024-04-08T21:15:36Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Assured LLM-Based Software Engineering [51.003878077888686]
This paper is an outline of the content of the keynote by Mark Harman at the International Workshop on Interpretability, Robustness, and Benchmarking in Neural Software Engineering, Monday 15th April 2024, Lisbon, Portugal.
arXiv Detail & Related papers (2024-02-06T20:38:46Z) - JumpCoder: Go Beyond Autoregressive Coder via Online Modification [18.9350072969148]
We introduce JumpCoder, a novel model-agnostic framework that enables human-like online modification and non-sequential generation to augment code LLMs.
The key idea behind JumpCoder is to insert new code into the currently generated code when necessary during generation, which is achieved through an auxiliary infilling model.
arXiv Detail & Related papers (2024-01-15T18:04:29Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Making Large Language Models A Better Foundation For Dense Retrieval [19.38740248464456]
Dense retrieval needs to learn discriminative text embeddings to represent the semantic relationship between query and document.
It may benefit from the using of large language models (LLMs), given LLMs' strong capability on semantic understanding.
We propose LLaRA (LLM adapted for dense RetrievAl), which works as a post-hoc adaptation of dense retrieval application.
arXiv Detail & Related papers (2023-12-24T15:10:35Z) - Towards Verifiable Text Generation with Symbolic References [27.01624440701639]
We propose symbolically grounded generation (SymGen) as a simple approach for enabling easier manual validation of an LLM's output.
SymGen prompts an LLM to interleave its regular output text with explicit symbolic references to fields present in some conditioning data.
Across a range of data-to-text and question-answering experiments, we find that LLMs are able to directly output text that makes use of accurate symbolic references while maintaining fluency and factuality.
arXiv Detail & Related papers (2023-11-15T18:28:29Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
Verifiable generation aims to let the large language model (LLM) generate text with supporting documents.
We propose LLatrieval (Large Language Model Verified Retrieval), where the LLM updates the retrieval result until it verifies that the retrieved documents can sufficiently support answering the question.
Experiments show that LLatrieval significantly outperforms extensive baselines and achieves state-of-the-art results.
arXiv Detail & Related papers (2023-11-14T01:38:02Z) - Evaluating, Understanding, and Improving Constrained Text Generation for Large Language Models [49.74036826946397]
This study investigates constrained text generation for large language models (LLMs)
Our research mainly focuses on mainstream open-source LLMs, categorizing constraints into lexical, structural, and relation-based types.
Results illuminate LLMs' capacity and deficiency to incorporate constraints and provide insights for future developments in constrained text generation.
arXiv Detail & Related papers (2023-10-25T03:58:49Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
We propose LEVER, a simple approach to improve language-to-code generation by learning to verify the generated programs with their execution results.
Specifically, we train verifiers to determine whether a program sampled from the LLMs is correct or not based on the natural language input, the program itself and its execution results.
LEVER consistently improves over the base code LLMs(4.6% to 10.9% with code-davinci) and achieves new state-of-the-art results on all of them.
arXiv Detail & Related papers (2023-02-16T18:23:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.