Field theory of monitored, interacting fermion dynamics with charge conservation
- URL: http://arxiv.org/abs/2410.07317v2
- Date: Mon, 14 Apr 2025 18:41:10 GMT
- Title: Field theory of monitored, interacting fermion dynamics with charge conservation
- Authors: Haoyu Guo, Matthew S. Foster, Chao-Ming Jian, Andreas W. W. Ludwig,
- Abstract summary: We show how monitored dynamics are situated within the framework of general far-from-equilibrium, quantum condensed-matter physics.<n>We illustrate this using the monitored dynamics of interacting fermions with a conserved charge.<n>Our framework provides a template for other classes of MIPTs and situates these within the arena of non-equilibrium condensed matter physics.
- Score: 0.5356944479760104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measurement-induced phase transitions (MIPTs) in monitored quantum dynamics are non-equilibrium phase transitions between quantum-chaotic (volume-law entangled) and entanglement-suppressed, area-law phases. We reveal how monitored dynamics are situated within the framework of general far-from-equilibrium, quantum condensed-matter physics. Measurement-induced heating effects scramble the distribution function in generic (interacting) monitored fermion systems, which enables a simplified symmetry-based description of the dynamics. We demonstrate the equivalence of the Keldysh technique with the conventional Statistical-Mechanics Model for circuits, resulting from a doubled Hilbert-space (Choi-Jamio{\l}kowski) mapping. We illustrate this using the monitored dynamics of interacting fermions with a conserved charge, deriving a unified effective field theory that captures all phases and phase transitions. The non-interacting counterpart in 1D space only has an area-law phase, with no MIPT. This was explained via an effective non-linear sigma model replica field theory possessing a very large symmetry. We show that other phases and phase transitions emerge when the replica symmetry is reduced by interactions. The reduced symmetry combines a replica permutation symmetry and charge-conservation within each replica. The former and its spontaneous breaking govern the MIPT, which can be recognized via a separatrix in the renormalization group flow. The replica-resolved charge conservation dictates the ``charge-sharpening" transition between two kinds of dynamics, where the global charge information is either hidden or reconstructible from the measurements. The field theory explains why the charge-sharpening transition should occur only in the volume-law phase. Our framework provides a template for other classes of MIPTs and situates these within the arena of non-equilibrium condensed matter physics.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Theory of free fermions dynamics under partial post-selected monitoring [49.1574468325115]
We derive a partial post-selected Schrdinger"o equation based on a microscopic description of continuous weak measurement.
We show that the passage to the monitored universality occurs abruptly at finite partial post-selection.
Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories.
arXiv Detail & Related papers (2023-12-21T16:53:42Z) - Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Entanglement resolution of free Dirac fermions on a torus [68.8204255655161]
We first evaluate the SRE for massless Dirac fermions in a system at finite temperature and size.
The charge-dependent entropies turn out to be equally distributed among all the symmetry sectors at leading order.
arXiv Detail & Related papers (2022-12-14T14:54:35Z) - Keldysh Nonlinear Sigma Model for a Free-Fermion Gas under Continuous
Measurements [1.5974497551212925]
Quantum entanglement phase transitions have provided new insights to quantum many-body dynamics.
We analytically analyze a $d$-dimension free-fermion gas subject to continuous projective measurements.
Our effective theory resembles to that used to describe the disordered fermionic systems.
arXiv Detail & Related papers (2022-07-07T15:31:34Z) - From locality to irregularity: Introducing local quenches in massive
scalar field theory [68.8204255655161]
We consider the dynamics of excited local states in massive scalar field theory in an arbitrary spacetime dimension.
We identify different regimes of their evolution depending on the values of the field mass and the quench regularization parameter.
We also investigate the local quenches in massive scalar field theory on a cylinder and show that they cause an erratic and chaotic-like evolution of observables.
arXiv Detail & Related papers (2022-05-24T18:00:07Z) - Monitored Open Fermion Dynamics: Exploring the Interplay of Measurement,
Decoherence, and Free Hamiltonian Evolution [0.0]
We investigate the impact of dephasing and the inevitable evolution into a non-Gaussian, mixed state, on the dynamics of monitored fermions.
For weak dephasing, constant monitoring preserves a weakly mixed state, which displays a robust measurement-induced phase transition.
We interpret this as a signature of gapless, classical diffusion, which is stabilized by the balanced interplay of Hamiltonian dynamics, measurements, and decoherence.
arXiv Detail & Related papers (2022-02-28T19:00:13Z) - Field theory of charge sharpening in symmetric monitored quantum
circuits [0.2936007114555107]
Monitored quantum circuits (MRCs) exhibit a measurement-induced phase transition between area-law and volume-law entanglement scaling.
MRCs with a conserved charge additionally exhibit two distinct volume-law entangled phases that cannot be characterized by equilibrium notions of symmetry-breaking or topological order.
We numerically corroborate these scaling predictions also hold for discrete-time projective-measurement circuit models using large-scale matrix-product state simulations.
arXiv Detail & Related papers (2021-11-17T19:00:28Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Effective Theory for the Measurement-Induced Phase Transition of Dirac
Fermions [0.0]
A wave function exposed to measurements undergoes pure state dynamics.
For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions.
A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely.
arXiv Detail & Related papers (2021-02-16T19:00:00Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Entanglement Transition in the Projective Transverse Field Ising Model [0.0]
We study the projective transverse field Ising model, a model with two noncommuting projective measurements and no unitary dynamics.
We numerically demonstrate that their competition drives an entanglement transition between two distinct steady states.
We conclude with an interpretation of the entanglement transition in the context of quantum error correction.
arXiv Detail & Related papers (2020-06-17T09:40:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.