Toward hybrid quantum simulations with qubits and qumodes on trapped-ion platforms
- URL: http://arxiv.org/abs/2410.07346v1
- Date: Wed, 9 Oct 2024 18:01:15 GMT
- Title: Toward hybrid quantum simulations with qubits and qumodes on trapped-ion platforms
- Authors: Jack Y. Araz, Matt Grau, Jake Montgomery, Felix Ringer,
- Abstract summary: We explore the feasibility of hybrid quantum computing using both discrete (qubit) and continuous (qumode) variables on trapped-ion platforms.
We show that high-fidelity hybrid gates and measurement operations can be achieved for existing trapped-ion quantum platforms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the feasibility of hybrid quantum computing using both discrete (qubit) and continuous (qumode) variables on trapped-ion platforms. Trapped-ion systems have demonstrated record one- and two-qubit gate fidelities and long qubit coherence times while qumodes, which can be represented by the collective vibrational modes of the ion chain, have remained relatively unexplored for their use in computing. Using numerical simulations, we show that high-fidelity hybrid gates and measurement operations can be achieved for existing trapped-ion quantum platforms. As an exemplary application, we consider quantum simulations of the Jaynes-Cummings-Hubbard model, which is given by a one-dimensional chain of interacting spin and boson degrees of freedom. Using classical simulations, we study its real-time evolution and we develop a suitable variational quantum algorithm for the ground state preparation. Our results motivate further studies of hybrid quantum computing in this context, which may lead to direct applications in condensed matter and fundamental particle and nuclear physics.
Related papers
- Progress in Trapped-Ion Quantum Simulation [0.46873264197900916]
Trapped ions offer long coherence times and high fidelity, programmable quantum operations.
Digital (gate-based) quantum simulations exploit trapped-ion hardware capabilities.
arXiv Detail & Related papers (2024-09-04T18:00:02Z) - Quantum simulation in hybrid transmission lines [55.2480439325792]
We propose a hybrid platform, in which a right-handed transmission line is connected to a left-handed transmission line by means of a superconducting quantum interference device (SQUID)
We show that, by activating specific resonance conditions, this platform can be used as a quantum simulator of different phenomena in quantum optics, multimode quantum systems and quantum thermodynamics.
arXiv Detail & Related papers (2024-03-13T13:15:14Z) - A Site-Resolved 2D Quantum Simulator with Hundreds of Trapped Ions [0.18563999711877635]
We report the stable trapping of 512 ions in a 2D Wigner crystal and the sideband cooling of their transverse motion.
We demonstrate the quantum simulation of long-range quantum Ising models with tunable coupling strengths and patterns, with or without frustration, using 300 ions.
Our work paves the way for simulating classically intractable quantum dynamics and for running NISQ algorithms using 2D ion trap quantum simulators.
arXiv Detail & Related papers (2023-11-28T19:00:39Z) - Qubits on programmable geometries with a trapped-ion quantum processor [2.0295982805787776]
We develop a class of high-dimensional Ising interactions using a linear one-dimensional (1D) ion chain with up to 8 qubits through stroboscopic sequences of commuting Hamiltonians.
We extend this method to non-commuting circuits and demonstrate the quantum XY and Heisenberg models using Floquet periodic drives with tunable symmetries.
arXiv Detail & Related papers (2023-08-20T07:01:57Z) - Adaptively partitioned analog quantum simulation on near-term quantum
computers: The nonclassical free-induction decay of NV centers in diamond [0.24475591916185496]
We propose an alternative analog simulation approach on near-term quantum devices.
Our approach circumvents the limitations by adaptively partitioning the bath into several groups.
This work sheds light on a flexible approach to simulate large-scale materials on noisy near-term quantum computers.
arXiv Detail & Related papers (2023-03-03T14:39:48Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing resonating valence bonds on a programmable germanium quantum
simulator [0.0]
We introduce quantum simulation using hole spins in germanium quantum dots.
We demonstrate extensive and coherent control enabling the tuning of multi-spin states in isolated, paired, and fully coupled quantum dots.
arXiv Detail & Related papers (2022-08-24T12:55:51Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.