論文の概要: Enhancing Soccer Camera Calibration Through Keypoint Exploitation
- arxiv url: http://arxiv.org/abs/2410.07401v1
- Date: Wed, 9 Oct 2024 20:01:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 20:37:14.292514
- Title: Enhancing Soccer Camera Calibration Through Keypoint Exploitation
- Title(参考訳): キーポイント爆発によるサッカーカメラキャリブレーションの強化
- Authors: Nikolay S. Falaleev, Ruilong Chen,
- Abstract要約: 本稿では,高品質な点対を得るという課題に対処する多段階パイプラインを提案する。
本手法は,直線交点や直線-円錐交点,円錐上の点,その他の幾何学的特徴を活用することにより,校正に利用できる点の数を大幅に増加させる。
我々は,サッカー放送カメラのキャリブレーション・データセットの最大化について検討し,サッカーネットカメラチャレンジ2023でトップの地位を確保した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate camera calibration is essential for transforming 2D images from camera sensors into 3D world coordinates, enabling precise scene geometry interpretation and supporting sports analytics tasks such as player tracking, offside detection, and performance analysis. However, obtaining a sufficient number of high-quality point pairs remains a significant challenge for both traditional and deep learning-based calibration methods. This paper introduces a multi-stage pipeline that addresses this challenge by leveraging the structural features of the football pitch. Our approach significantly increases the number of usable points for calibration by exploiting line-line and line-conic intersections, points on the conics, and other geometric features. To mitigate the impact of imperfect annotations, we employ data fitting techniques. Our pipeline utilizes deep learning for keypoint and line detection and incorporates geometric constraints based on real-world pitch dimensions. A voter algorithm iteratively selects the most reliable keypoints, further enhancing calibration accuracy. We evaluated our approach on the largest football broadcast camera calibration dataset available, and secured the top position in the SoccerNet Camera Calibration Challenge 2023 [arXiv:2309.06006], which demonstrates the effectiveness of our method in real-world scenarios. The project code is available at https://github.com/NikolasEnt/soccernet-calibration-sportlight .
- Abstract(参考訳): 正確なカメラキャリブレーションは、カメラセンサから3次元世界座標へ2D画像を変換し、正確なシーン形状の解釈を可能にし、選手追跡、オフサイド検出、パフォーマンス解析などのスポーツ分析タスクをサポートするために必要である。
しかし,従来の校正法と深層学習に基づく校正法では,十分な数の高品質な点対が得られることが大きな課題である。
本稿では,サッカーピッチの構造的特徴を活用することで,この問題に対処する多段パイプラインを提案する。
提案手法は,直線交点や直線-円錐交点,円錐上の点,その他の幾何学的特徴を利用して,校正に利用できる点の数を大幅に増加させる。
不完全なアノテーションの影響を軽減するため、私たちはデータフィッティング技術を採用しています。
我々のパイプラインは、キーポイントとライン検出のためのディープラーニングを利用し、実世界のピッチ次元に基づく幾何学的制約を取り入れている。
投票アルゴリズムは、最も信頼性の高いキーポイントを反復的に選択し、キャリブレーション精度をさらに高める。
我々は,利用可能な最大のサッカー放送カメラキャリブレーションデータセットについて,我々のアプローチを評価し,実際のシナリオにおける本手法の有効性を実証したサッカーネットカメラキャリブレーションチャレンジ2023(arXiv:2309.06006)の上位位置を確保した。
プロジェクトのコードはhttps://github.com/NikolasEnt/soccernet-calibration-sportlightで公開されている。
関連論文リスト
- Calibration of 3D Single-pixel Imaging Systems with a Calibration Field [3.255688303169846]
3Dシングルピクセルイメージング(SPI)は、様々なウェーブバンドに適用できる有望なイメージング技術である。
3D SPIの主な課題は、キャリブレーションが参照として多くの標準点を必要とすることである。
本研究では,単一画像から標準点を生成するためのフィールド(CaliF)を構築する。
論文 参考訳(メタデータ) (2024-10-10T02:34:21Z) - Kalib: Markerless Hand-Eye Calibration with Keypoint Tracking [52.4190876409222]
ハンドアイキャリブレーションでは、カメラとロボット間の変換を推定する。
ディープラーニングの最近の進歩は、マーカーレス技術を提供するが、それらは課題を提示している。
自動的かつ普遍的なマーカーレスハンドアイキャリブレーションパイプラインであるKalibを提案する。
論文 参考訳(メタデータ) (2024-08-20T06:03:40Z) - PnLCalib: Sports Field Registration via Points and Lines Optimization [16.278222277579655]
放送されたスポーツビデオのカメラキャリブレーションは、正確なスポーツフィールドの登録に多くの課題をもたらす。
従来の検索ベースの手法は初期カメラのポーズ推定に依存しており、非標準位置で苦労する可能性がある。
本稿では,3次元サッカー場モデルと予め定義されたキーポイントのセットを利用して,これらの制限を克服する最適化に基づくキャリブレーションパイプラインを提案する。
論文 参考訳(メタデータ) (2024-04-12T11:15:15Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
本稿では,3次元視覚タスクにおける現在のデータセットの限界について,精度,サイズ,リアリズム,および光度に挑戦する対象に対する適切な画像モダリティの観点から検討する。
既存の3次元認識と6次元オブジェクトポーズデータセットを強化する新しいアノテーションと取得パイプラインを提案する。
論文 参考訳(メタデータ) (2023-08-21T10:38:32Z) - E-Calib: A Fast, Robust and Accurate Calibration Toolbox for Event Cameras [18.54225086007182]
E-Calibは、イベントカメラの新しい、高速で、堅牢で、正確なキャリブレーションツールボックスである。
提案手法は,様々なイベントカメラモデルに対する様々な厳密な実験で検証される。
論文 参考訳(メタデータ) (2023-06-15T12:16:38Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
我々は、マーカーレスでホワイトボックスであり、より優れた精度とロバスト性を提供するEasyHeCと呼ばれる手眼校正の新しいアプローチを導入する。
我々は,2つの重要な技術 – レンダリングベースのカメラポーズの最適化と整合性に基づく共同空間探索 – を利用することを提案する。
本評価は,合成および実世界のデータセットにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-02T03:49:54Z) - Deep Learning for Camera Calibration and Beyond: A Survey [100.75060862015945]
カメラキャリブレーションでは、キャプチャされたシーケンスから幾何学的特徴を推測するために、カメラパラメータを推定する。
近年の取り組みでは,手動キャリブレーションの繰り返し作業に代えて,学習ベースのソリューションが活用される可能性が示唆されている。
論文 参考訳(メタデータ) (2023-03-19T04:00:05Z) - TartanCalib: Iterative Wide-Angle Lens Calibration using Adaptive
SubPixel Refinement of AprilTags [23.568127229446965]
現在の最先端技術による広角レンズの校正は、エッジの極端に歪みがあるため、結果を得られない。
精度の高い広角キャリブレーション手法を提案する。
論文 参考訳(メタデータ) (2022-10-05T18:57:07Z) - A Deep Perceptual Measure for Lens and Camera Calibration [35.03926427249506]
従来のマルチイメージキャリブレーション法の代わりに,単一画像から直接カメラキャリブレーションパラメータを推定することを提案する。
大規模なパノラマデータセットから自動的に生成されたサンプルを用いて、このネットワークをトレーニングする。
そこで我々は, カメラキャリブレーションパラメータを補正した3次元物体のリアリズムの判断を参加者に依頼した。
論文 参考訳(メタデータ) (2022-08-25T18:40:45Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
パターンベースのキャリブレーション技術は、カメラの内在を個別にキャリブレーションするために使用することができる。
Infrastucture-based calibration techniqueはSLAMやStructure-from-Motionで事前に構築した3Dマップを用いて外部情報を推定することができる。
本稿では,インフラストラクチャベースのアプローチを用いて,マルチカメラシステムをスクラッチから完全にキャリブレーションすることを提案する。
論文 参考訳(メタデータ) (2020-07-30T09:21:04Z) - Learning Camera Miscalibration Detection [83.38916296044394]
本稿では,視覚センサ,特にRGBカメラの誤校正検出を学習するためのデータ駆動型アプローチに焦点を当てた。
コントリビューションには、RGBカメラの誤校正基準と、この基準に基づく新しい半合成データセット生成パイプラインが含まれる。
深層畳み込みニューラルネットワークをトレーニングすることにより、カメラ固有のパラメータの再校正が必要か否かを判断するパイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2020-05-24T10:32:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。