Segmentation and Recovery of Superquadric Models using Convolutional
Neural Networks
- URL: http://arxiv.org/abs/2001.10504v1
- Date: Tue, 28 Jan 2020 18:17:48 GMT
- Title: Segmentation and Recovery of Superquadric Models using Convolutional
Neural Networks
- Authors: Jaka \v{S}ircelj, Tim Oblak, Klemen Grm, Uro\v{s} Petkovi\'c, Ale\v{s}
Jakli\v{c}, Peter Peer, Vitomir \v{S}truc and Franc Solina
- Abstract summary: We present a (two-stage) approach built around convolutional neural networks (CNNs)
In the first stage, our approach uses a Mask RCNN model to identify superquadric-like structures in depth scenes.
We are able to describe complex structures with a small number of interpretable parameters.
- Score: 2.454342521577328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we address the problem of representing 3D visual data with
parameterized volumetric shape primitives. Specifically, we present a
(two-stage) approach built around convolutional neural networks (CNNs) capable
of segmenting complex depth scenes into the simpler geometric structures that
can be represented with superquadric models. In the first stage, our approach
uses a Mask RCNN model to identify superquadric-like structures in depth scenes
and then fits superquadric models to the segmented structures using a specially
designed CNN regressor. Using our approach we are able to describe complex
structures with a small number of interpretable parameters. We evaluated the
proposed approach on synthetic as well as real-world depth data and show that
our solution does not only result in competitive performance in comparison to
the state-of-the-art, but is able to decompose scenes into a number of
superquadric models at a fraction of the time required by competing approaches.
We make all data and models used in the paper available from
https://lmi.fe.uni-lj.si/en/research/resources/sq-seg.
Related papers
- Slender Object Scene Segmentation in Remote Sensing Image Based on Learnable Morphological Skeleton with Segment Anything Model [23.419029471215325]
We propose a new approach that integrates learnable morphological skeleton prior into deep neural networks.
Experimental results on remote sensing datasets, including buildings and roads, demonstrate that our method outperforms the original Segment Anything Model.
arXiv Detail & Related papers (2024-11-13T13:19:51Z) - Segmenting objects with Bayesian fusion of active contour models and convnet priors [0.729597981661727]
We propose a novel instance segmentation method geared towards Natural Resource Monitoring (NRM) imagery.
We formulate the problem as Bayesian maximum a posteriori inference which, in learning the individual object contours, incorporates shape, location, and position priors.
In experiments, we tackle the challenging, real-world problem of segmenting individual dead tree crowns and precise contours.
arXiv Detail & Related papers (2024-10-09T20:36:43Z) - SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.
Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.
In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - Neural Textured Deformable Meshes for Robust Analysis-by-Synthesis [17.920305227880245]
Our paper formulates triple vision tasks in a consistent manner using approximate analysis-by-synthesis.
We show that our analysis-by-synthesis is much more robust than conventional neural networks when evaluated on real-world images.
arXiv Detail & Related papers (2023-05-31T18:45:02Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
We propose to directly generate structural parameters by utilizing the specifically designed hyper kernels.
We obtain three kinds of networks to separately conduct pixel-level or image-level classifications with 1-D or 3-D convolutions.
A series of experiments on six public datasets demonstrate that the proposed methods achieve state-of-the-art results.
arXiv Detail & Related papers (2023-04-23T17:27:40Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
Graph Convolutional Networks (GCNs) have already demonstrated their powerful ability to model the irregular data.
We present a novel spatial-temporal GCN architecture which is defined via the Poincar'e geometry.
We evaluate our method on two current largest scale 3D datasets.
arXiv Detail & Related papers (2020-07-30T18:23:18Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames.
We show that our approach significantly improves accuracy, scalability, and robustness against noise.
arXiv Detail & Related papers (2020-06-15T09:15:54Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth.
In this paper, we introduce body segmentation as critical supervision.
To improve the reconstruction with part segmentation, we propose a part-level differentiable part that enables part-based models to be supervised by part segmentation.
arXiv Detail & Related papers (2020-03-24T14:25:46Z) - Convolutional Occupancy Networks [88.48287716452002]
We propose Convolutional Occupancy Networks, a more flexible implicit representation for detailed reconstruction of objects and 3D scenes.
By combining convolutional encoders with implicit occupancy decoders, our model incorporates inductive biases, enabling structured reasoning in 3D space.
We empirically find that our method enables the fine-grained implicit 3D reconstruction of single objects, scales to large indoor scenes, and generalizes well from synthetic to real data.
arXiv Detail & Related papers (2020-03-10T10:17:07Z) - STD-Net: Structure-preserving and Topology-adaptive Deformation Network
for 3D Reconstruction from a Single Image [27.885717341244014]
3D reconstruction from a single view image is a long-standing prob-lem in computer vision.
In this paper, we propose a novel methodcalled STD-Net to reconstruct the 3D models utilizing the mesh representation.
Experimental results on the images from ShapeNet show that ourproposed STD-Net has better performance than other state-of-the-art methods onreconstructing 3D objects.
arXiv Detail & Related papers (2020-03-07T11:02:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.