論文の概要: Representation-Enhanced Neural Knowledge Integration with Application to Large-Scale Medical Ontology Learning
- arxiv url: http://arxiv.org/abs/2410.07454v1
- Date: Wed, 9 Oct 2024 21:38:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 17:06:37.640706
- Title: Representation-Enhanced Neural Knowledge Integration with Application to Large-Scale Medical Ontology Learning
- Title(参考訳): 表現強化型ニューラルネットワーク統合と大規模医学オントロジー学習への応用
- Authors: Suqi Liu, Tianxi Cai, Xiaoou Li,
- Abstract要約: 本稿では,関係型の同時学習を実現するため,理論的に保証されたRENKIという統計フレームワークを提案する。
提案フレームワークは,表現学習出力をニューラルネットワークの初期エンティティ埋め込みに組み込んで,知識グラフのスコア関数を近似する。
ヘテロジニアス関係の存在下での重み付けの効果と、非パラメトリックモデルに表現学習を組み込むことの利点を実証する。
- 参考スコア(独自算出の注目度): 3.010503480024405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A large-scale knowledge graph enhances reproducibility in biomedical data discovery by providing a standardized, integrated framework that ensures consistent interpretation across diverse datasets. It improves generalizability by connecting data from various sources, enabling broader applicability of findings across different populations and conditions. Generating reliable knowledge graph, leveraging multi-source information from existing literature, however, is challenging especially with a large number of node sizes and heterogeneous relations. In this paper, we propose a general theoretically guaranteed statistical framework, called RENKI, to enable simultaneous learning of multiple relation types. RENKI generalizes various network models widely used in statistics and computer science. The proposed framework incorporates representation learning output into initial entity embedding of a neural network that approximates the score function for the knowledge graph and continuously trains the model to fit observed facts. We prove nonasymptotic bounds for in-sample and out-of-sample weighted MSEs in relation to the pseudo-dimension of the knowledge graph function class. Additionally, we provide pseudo-dimensions for score functions based on multilayer neural networks with ReLU activation function, in the scenarios when the embedding parameters either fixed or trainable. Finally, we complement our theoretical results with numerical studies and apply the method to learn a comprehensive medical knowledge graph combining a pretrained language model representation with knowledge graph links observed in several medical ontologies. The experiments justify our theoretical findings and demonstrate the effect of weighting in the presence of heterogeneous relations and the benefit of incorporating representation learning in nonparametric models.
- Abstract(参考訳): 大規模知識グラフは、多様なデータセット間で一貫した解釈を保証する標準化された統合されたフレームワークを提供することにより、バイオメディカルデータ発見の再現性を高める。
様々なソースからのデータを接続することで、一般化性を改善し、異なる集団や状況における発見の広範な適用を可能にする。
しかし、既存の文献から複数ソース情報を活用する信頼性の高い知識グラフを生成することは、特に多数のノードサイズと不均一な関係において困難である。
本稿では,複数の関係型の同時学習を実現するため,理論的に保証されたRENKIという統計フレームワークを提案する。
RENKIは統計学や計算機科学で広く使われている様々なネットワークモデルを一般化している。
提案フレームワークは、表現学習出力をニューラルネットワークの初期エンティティ埋め込みに組み込み、知識グラフのスコア関数を近似し、観測事実に適合するようにモデルを継続的に訓練する。
我々は,知識グラフ関数クラスの擬次元に関して,サンプル内およびサンプル外重み付きMSEの漸近境界を証明した。
さらに,ReLUアクティベーション関数を持つ多層ニューラルネットワークに基づくスコア関数の擬似次元を,埋め込みパラメータが固定またはトレーニング可能な場合のシナリオで提供する。
最後に, 理論的結果と数値的研究を補完し, 複数のオントロジーで観測された知識グラフリンクと事前学習された言語モデル表現を組み合わせた総合的な医療知識グラフの学習手法を適用した。
本実験は,異種関係の存在下での重み付けの効果と,非パラメトリックモデルに表現学習を組み込むことの利点を正当化し,その効果を実証するものである。
関連論文リスト
- Graph Neural Network-Based Entity Extraction and Relationship Reasoning in Complex Knowledge Graphs [1.5998200006932823]
本研究では,グラフニューラルネットワークに基づく知識グラフ実体抽出と関係推論アルゴリズムを提案する。
本稿では、エンドツーエンドのジョイントモデルを構築することにより、エンティティと関係の効率的な認識と推論を実現する。
論文 参考訳(メタデータ) (2024-11-19T16:23:49Z) - Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
我々は,マルチモーダルデータに対するフレキシブルな識別条件の開発を目指している。
我々は、各潜伏成分の識別可能性を保証するとともに、サブスペース識別結果を事前の作業から拡張する。
我々の重要な理論的要素は、異なるモーダル間の因果関係の構造的空間性である。
論文 参考訳(メタデータ) (2024-11-10T16:40:27Z) - GTP-4o: Modality-prompted Heterogeneous Graph Learning for Omni-modal Biomedical Representation [68.63955715643974]
Omnimodal Learning(GTP-4o)のためのモダリティプロンプト不均質グラフ
我々は、Omnimodal Learning(GTP-4o)のための革新的モダリティプロンプト不均質グラフを提案する。
論文 参考訳(メタデータ) (2024-07-08T01:06:13Z) - Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
我々は,関係学習をハイパーグラフリカバリとして形式化する数学的モデルを導入し,基礎モデル(FM)の事前学習について検討する。
我々のフレームワークでは、世界はハイパーグラフとして表現され、データはハイパーエッジからランダムなサンプルとして抽象化される。我々は、このハイパーグラフを復元するための事前学習モデル(PTM)の有効性を理論的に検証し、ミニマックスに近い最適スタイルでデータ効率を解析する。
論文 参考訳(メタデータ) (2024-06-17T06:20:39Z) - Neural Graphical Models [2.6842860806280058]
本稿では,複雑な特徴依存を合理的な計算コストで表現するために,NGM(Neural Graphical Models)を導入する。
ニューラルネットワークをマルチタスク学習フレームワークとして使用することにより,機能間の依存関係構造と複雑な関数表現をキャプチャする。
NGMは、有向グラフ、無向グラフ、混合エッジグラフを含む一般的なグラフ構造に適合し、混合入力データ型をサポートする。
論文 参考訳(メタデータ) (2022-10-02T07:59:51Z) - Multi-modal Graph Learning for Disease Prediction [35.4310911850558]
病気予測のためのエンドツーエンドのマルチモーダルグラフ学習フレームワーク(MMGL)を提案する。
隣接行列を既存の手法として手動で定義する代わりに、潜在グラフ構造を適応グラフ学習の新しい方法によって捉えることができる。
論文 参考訳(メタデータ) (2021-07-01T03:59:22Z) - Ensemble manifold based regularized multi-modal graph convolutional
network for cognitive ability prediction [33.03449099154264]
マルチモーダル機能磁気共鳴イメージング(fMRI)を使用して、脳の接続ネットワークに基づいて個々の行動特性および認知特性を予測することができます。
本稿では,fMRI時系列と各脳領域間の機能接続(FC)を組み込んだ,解釈可能な多モードグラフ畳み込みネットワーク(MGCN)モデルを提案する。
我々は、フィラデルフィア神経開発コホート上のMGCNモデルを検証し、個々の広範囲達成テスト(WRAT)スコアを予測します。
論文 参考訳(メタデータ) (2021-01-20T20:53:07Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z) - Beyond Data Samples: Aligning Differential Networks Estimation with
Scientific Knowledge [18.980524563441975]
提案した推定器は多数の変数に対してスケーラブルであり、鋭い収束率を達成する。
本研究は, 遺伝的ネットワーク同定と脳コネクトーム変化発見において, グループ, 空間, 解剖学的知識を統合することの意義を明らかにするものである。
論文 参考訳(メタデータ) (2020-04-24T00:01:15Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。