論文の概要: Graph Neural Network-Based Entity Extraction and Relationship Reasoning in Complex Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2411.15195v1
- Date: Tue, 19 Nov 2024 16:23:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:24:50.531865
- Title: Graph Neural Network-Based Entity Extraction and Relationship Reasoning in Complex Knowledge Graphs
- Title(参考訳): 複雑な知識グラフにおけるグラフニューラルネットワークに基づくエンティティ抽出と関係推論
- Authors: Junliang Du, Guiran Liu, Jia Gao, Xiaoxuan Liao, Jiacheng Hu, Linxiao Wu,
- Abstract要約: 本研究では,グラフニューラルネットワークに基づく知識グラフ実体抽出と関係推論アルゴリズムを提案する。
本稿では、エンドツーエンドのジョイントモデルを構築することにより、エンティティと関係の効率的な認識と推論を実現する。
- 参考スコア(独自算出の注目度): 1.5998200006932823
- License:
- Abstract: This study proposed a knowledge graph entity extraction and relationship reasoning algorithm based on a graph neural network, using a graph convolutional network and graph attention network to model the complex structure in the knowledge graph. By building an end-to-end joint model, this paper achieves efficient recognition and reasoning of entities and relationships. In the experiment, this paper compared the model with a variety of deep learning algorithms and verified its superiority through indicators such as AUC, recall rate, precision rate, and F1 value. The experimental results show that the model proposed in this paper performs well in all indicators, especially in complex knowledge graphs, it has stronger generalization ability and stability. This provides strong support for further research on knowledge graphs and also demonstrates the application potential of graph neural networks in entity extraction and relationship reasoning.
- Abstract(参考訳): 本研究では,知識グラフの複雑な構造をモデル化するために,グラフ畳み込みネットワークとグラフアテンションネットワークを用いて,グラフニューラルネットワークに基づく知識グラフ実体抽出と関係推論アルゴリズムを提案する。
本稿では、エンドツーエンドのジョイントモデルを構築することにより、エンティティと関係の効率的な認識と推論を実現する。
実験では,モデルとさまざまなディープラーニングアルゴリズムを比較し,AUC,リコール率,精度,F1値などの指標を用いてその優位性を検証した。
実験結果から,本論文で提案したモデルはすべての指標,特に複雑な知識グラフにおいて,より強力な一般化能力と安定性を有することが示された。
これは知識グラフのさらなる研究への強力な支援を提供し、エンティティ抽出と関係推論におけるグラフニューラルネットワークの適用可能性を示す。
関連論文リスト
- Advanced RAG Models with Graph Structures: Optimizing Complex Knowledge Reasoning and Text Generation [7.3491970177535]
本研究では,グラフニューラルネットワーク(GNN)を組み合わせたグラフ構造データ処理手法を提案する。
この結果から,本論文で提案するグラフベースRAGモデルは,品質,知識の整合性,推論能力の点で従来の世代モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-06T00:23:55Z) - Self-Supervised Graph Neural Networks for Enhanced Feature Extraction in Heterogeneous Information Networks [16.12856816023414]
本稿では,インターネットの急速な発展に伴う複雑なグラフデータ処理におけるグラフニューラルネットワーク(GNN)の適用と課題について考察する。
自己監督機構を導入することにより、グラフデータの多様性と複雑さに対する既存モデルの適合性を向上させることが期待されている。
論文 参考訳(メタデータ) (2024-10-23T07:14:37Z) - Introducing Diminutive Causal Structure into Graph Representation Learning [19.132025125620274]
本稿では,グラフニューラルネット(GNN)が専門的な最小の因果構造から洞察を得ることを可能にする新しい手法を提案する。
本手法は,これらの小型因果構造のモデル表現から因果知識を抽出する。
論文 参考訳(メタデータ) (2024-06-13T00:18:20Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - A Theory of Link Prediction via Relational Weisfeiler-Leman on Knowledge
Graphs [6.379544211152605]
グラフニューラルネットワークは、グラフ構造化データ上での表現学習のための顕著なモデルである。
私たちの目標は、知識グラフのためのグラフニューラルネットワークのランドスケープを体系的に理解することです。
論文 参考訳(メタデータ) (2023-02-04T17:40:03Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
本稿では,ロバスト因果グラフ表現学習(RCGRL)を提案する。
RCGRLは、無条件のモーメント制約の下でインストゥルメンタル変数を生成するアクティブなアプローチを導入し、グラフ表現学習モデルにより、共同設立者を排除している。
論文 参考訳(メタデータ) (2022-08-18T01:31:25Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
解法ジレンマの統一概念に基づくグラフ分類における本質的難易度の研究」
構造ランドマークと相互作用モデリングのためのインダクティブニューラルネットワークモデルSLIM'を提案する。
論文 参考訳(メタデータ) (2020-06-29T01:01:42Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
動的テキスト環境における質問応答について検討する。
構築したグラフ上にグラフニューラルネットワークを構築し,エンドツーエンドでモデルをトレーニングする。
論文 参考訳(メタデータ) (2020-04-25T04:53:54Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。