Is C4 Dataset Optimal for Pruning? An Investigation of Calibration Data for LLM Pruning
- URL: http://arxiv.org/abs/2410.07461v1
- Date: Wed, 9 Oct 2024 22:00:19 GMT
- Title: Is C4 Dataset Optimal for Pruning? An Investigation of Calibration Data for LLM Pruning
- Authors: Abhinav Bandari, Lu Yin, Cheng-Yu Hsieh, Ajay Kumar Jaiswal, Tianlong Chen, Li Shen, Ranjay Krishna, Shiwei Liu,
- Abstract summary: LLM pruning approaches universally rely on the C4 dataset as the calibration data for calculating pruning scores.
In this study, we evaluate the choice of calibration data on LLM pruning, across a wide range of datasets.
Our results also uncover several subtle and often unexpected findings.
- Score: 56.795078085234195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Network pruning has emerged as a potential solution to make LLMs cheaper to deploy. However, existing LLM pruning approaches universally rely on the C4 dataset as the calibration data for calculating pruning scores, leaving its optimality unexplored. In this study, we evaluate the choice of calibration data on LLM pruning, across a wide range of datasets that are most commonly used in LLM training and evaluation, including four pertaining datasets as well as three categories of downstream tasks encompassing nine datasets. Each downstream dataset is prompted with In-Context Learning (ICL) and Chain-of-Thought (CoT), respectively. Besides the already intriguing observation that the choice of calibration data significantly impacts the performance of pruned LLMs, our results also uncover several subtle and often unexpected findings, summarized as follows: (1) C4 is not the optimal choice for LLM pruning, even among commonly used pre-training datasets; (2) arithmetic datasets, when used as calibration data, performs on par or even better than pre-training datasets; (3) pruning with downstream datasets does not necessarily help the corresponding downstream task, compared to pre-training data; (4) ICL is widely beneficial to all data categories, whereas CoT is only useful on certain tasks. Our findings shed light on the importance of carefully selecting calibration data for LLM pruning and pave the way for more efficient deployment of these powerful models in real-world applications. We release our code at: https://github.com/abx393/llm-pruning-calibration-data.
Related papers
- Efficient Alignment of Large Language Models via Data Sampling [0.4915744683251149]
We propose an information theory-based methodology for efficient alignment by identifying a small high quality subset.
We find that the model aligned using our proposed methodology outperforms other sampling methods and performs comparable to the model aligned with the full dataset.
arXiv Detail & Related papers (2024-11-15T19:36:15Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
Pretrained large language models (LLMs) are currently state-of-the-art for solving the vast majority of natural language processing tasks.
We propose LLM2LLM, a data augmentation strategy that uses a teacher LLM to enhance a small seed dataset.
We achieve improvements up to 24.2% on the GSM8K dataset, 32.6% on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC and 39.8% on SST-2 over regular fine-tuning in the low-data regime.
arXiv Detail & Related papers (2024-03-22T08:57:07Z) - Automated Data Curation for Robust Language Model Fine-Tuning [13.8454385440986]
We introduce an automated data curation pipeline CLEAR for instruction tuning datasets.
CLEAR estimates which training data is low-quality and either filters or corrects it.
Experiments reveal that CLEAR consistently improves the performance of fine-tuned models across many datasets and models.
arXiv Detail & Related papers (2024-03-19T14:44:45Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - Data-Juicer: A One-Stop Data Processing System for Large Language Models [73.27731037450995]
A data recipe is a mixture of data from different sources for training Large Language Models (LLMs)
We build a new system named Data-Juicer, with which we can efficiently generate diverse data recipes.
The data recipes derived with Data-Juicer gain notable improvements on state-of-the-art LLMs.
arXiv Detail & Related papers (2023-09-05T08:22:07Z) - DataComp: In search of the next generation of multimodal datasets [179.79323076587255]
DataComp is a testbed for dataset experiments centered around a new candidate pool of 12.8 billion image-text pairs from Common Crawl.
Our benchmark consists of multiple compute scales spanning four orders of magnitude.
In particular, our best baseline, DataComp-1B, enables training a CLIP ViT-L/14 from scratch to 79.2% zero-shot accuracy on ImageNet.
arXiv Detail & Related papers (2023-04-27T11:37:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.