SLearnLLM: A Self-Learning Framework for Efficient Domain-Specific Adaptation of Large Language Models
- URL: http://arxiv.org/abs/2505.17470v1
- Date: Fri, 23 May 2025 04:50:54 GMT
- Title: SLearnLLM: A Self-Learning Framework for Efficient Domain-Specific Adaptation of Large Language Models
- Authors: Xiang Liu, Zhaoxiang Liu, Peng Wang, Kohou Wang, Huan Hu, Kai Wang, Shiguo Lian,
- Abstract summary: We propose a self-learning framework for large language models (LLMs) inspired by human learning pattern.<n>This framework takes a fine-tuning (SFT) dataset in a specific domain as input.<n>We show that our method substantially reduces training time while achieving comparable improvements to those attained with full dataset fine-tuning.
- Score: 7.44035983292392
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: When using supervised fine-tuning (SFT) to adapt large language models (LLMs) to specific domains, a significant challenge arises: should we use the entire SFT dataset for fine-tuning? Common practice often involves fine-tuning directly on the entire dataset due to limited information on the LLM's past training data. However, if the SFT dataset largely overlaps with the model's existing knowledge, the performance gains are minimal, leading to wasted computational resources. Identifying the unknown knowledge within the SFT dataset and using it to fine-tune the model could substantially improve the training efficiency. To address this challenge, we propose a self-learning framework for LLMs inspired by human learning pattern. This framework takes a fine-tuning (SFT) dataset in a specific domain as input. First, the LLMs answer the questions in the SFT dataset. The LLMs then objectively grade the responses and filter out the incorrectly answered QA pairs. Finally, we fine-tune the LLMs based on this filtered QA set. Experimental results in the fields of agriculture and medicine demonstrate that our method substantially reduces training time while achieving comparable improvements to those attained with full dataset fine-tuning. By concentrating on the unknown knowledge within the SFT dataset, our approach enhances the efficiency of fine-tuning LLMs.
Related papers
- FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain [14.109309236798518]
Supervised fine-tuning (SFT) is a standard approach to adapting large language models (LLMs) to new domains.<n>In this work, we improve the statistical efficiency of SFT by selecting an informative subset of training examples.
arXiv Detail & Related papers (2025-05-20T18:41:34Z) - NILE: Internal Consistency Alignment in Large Language Models [59.16120063368364]
We introduce NILE (iNternal consIstency aLignmEnt) framework, aimed at optimizing IFT datasets to unlock LLMs' capability further.<n>NILE operates by eliciting target pre-trained LLM's internal knowledge corresponding to instruction data.<n>Our experiments demonstrate that NILE-aligned IFT datasets sharply boost LLM performance across multiple ability evaluation datasets.
arXiv Detail & Related papers (2024-12-21T16:25:16Z) - 60 Data Points are Sufficient to Fine-Tune LLMs for Question-Answering [50.12622877002846]
Large language models (LLMs) encode extensive world knowledge through pre-training on massive datasets, which can be fine-tuned for the question-answering (QA) task.<n>We categorize supervised fine-tuning (SFT) data based on the extent of knowledge memorized by the pretrained LLMs.<n>Our experiments show that as few as 60 data points during the SFT stage can activate the knowledge encoded during pre-training, enabling LLMs to perform the QA task.
arXiv Detail & Related papers (2024-09-24T07:38:38Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
Pretrained large language models (LLMs) are currently state-of-the-art for solving the vast majority of natural language processing tasks.
We propose LLM2LLM, a data augmentation strategy that uses a teacher LLM to enhance a small seed dataset.
We achieve improvements up to 24.2% on the GSM8K dataset, 32.6% on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC and 39.8% on SST-2 over regular fine-tuning in the low-data regime.
arXiv Detail & Related papers (2024-03-22T08:57:07Z) - Automated Data Curation for Robust Language Model Fine-Tuning [13.8454385440986]
We introduce an automated data curation pipeline CLEAR for instruction tuning datasets.
CLEAR estimates which training data is low-quality and either filters or corrects it.
Experiments reveal that CLEAR consistently improves the performance of fine-tuned models across many datasets and models.
arXiv Detail & Related papers (2024-03-19T14:44:45Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - LaFFi: Leveraging Hybrid Natural Language Feedback for Fine-tuning
Language Models [14.087415157225715]
Fine-tuning Large Language Models (LLMs) adapts a trained model to specific downstream tasks.
Supervised Fine-Tuning (SFT) is a common approach, where an LLM is trained to produce desired answers.
This paper introduces an alternative to SFT called Natural Language Feedback for Finetuning LLMs (LaFFi)
arXiv Detail & Related papers (2023-12-31T21:18:16Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.