Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor
- URL: http://arxiv.org/abs/2406.02266v1
- Date: Tue, 4 Jun 2024 12:43:23 GMT
- Title: Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor
- Authors: Chuankai Xu, Dongming Zhao, Bo Wang, Hanwen Xing,
- Abstract summary: This work proposes a novel two-stage consistency learning approach for retrieved information compression in retrieval-augmented language models.
The proposed method is empirically validated across multiple datasets, demonstrating notable enhancements in precision and efficiency for question-answering tasks.
- Score: 4.35807211471107
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the prevalence of retrieval-augmented language models (RALMs), the seamless integration of these models with retrieval mechanisms to enhance performance in document-based tasks remains challenging. While some post-retrieval processing Retrieval-Augmented Generation (RAG) methods have achieved success, most still lack the ability to distinguish pertinent from extraneous information, leading to potential inconsistencies and reduced precision in the generated output, which subsequently affects the truthfulness of the language model's responses. To address these limitations, this work proposes a novel two-stage consistency learning approach for retrieved information compression in retrieval-augmented language models to enhance performance. By incorporating consistency learning, the aim is to generate summaries that maintain coherence and alignment with the intended semantic representations of a teacher model while improving faithfulness to the original retrieved documents. The proposed method is empirically validated across multiple datasets, demonstrating notable enhancements in precision and efficiency for question-answering tasks. It outperforms existing baselines and showcases the synergistic effects of combining contrastive and consistency learning paradigms within the retrieval-augmented generation framework.
Related papers
- Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
Generative training has enabled Vision-Language Models (VLMs) to tackle various complex tasks.
Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval.
This paper proposes a unified approach that integrates the strengths of both paradigms.
arXiv Detail & Related papers (2024-11-01T01:51:31Z) - Idempotent Unsupervised Representation Learning for Skeleton-Based Action Recognition [13.593511876719367]
We propose a novel skeleton-based idempotent generative model (IGM) for unsupervised representation learning.
Our experiments on benchmark datasets, NTU RGB+D and PKUMMD, demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2024-10-27T06:29:04Z) - VERA: Validation and Enhancement for Retrieval Augmented systems [0.0]
We propose textbfVERA (textbfValidation and textbfEnhancement for textbfRetrieval textbfAugmented systems), a system designed to evaluate and enhance the retrieved context before response generation.
VERA employs an evaluator-cum-enhancer LLM that first checks if external retrieval is necessary, evaluates the relevance and redundancy of the retrieved context, and refines it to eliminate non-essential information.
arXiv Detail & Related papers (2024-09-18T16:10:47Z) - Factual Dialogue Summarization via Learning from Large Language Models [35.63037083806503]
Large language model (LLM)-based automatic text summarization models generate more factually consistent summaries.
We employ zero-shot learning to extract symbolic knowledge from LLMs, generating factually consistent (positive) and inconsistent (negative) summaries.
Our approach achieves better factual consistency while maintaining coherence, fluency, and relevance, as confirmed by various automatic evaluation metrics.
arXiv Detail & Related papers (2024-06-20T20:03:37Z) - Think-then-Act: A Dual-Angle Evaluated Retrieval-Augmented Generation [3.2134014920850364]
Large language models (LLMs) often face challenges such as temporal misalignment and generating hallucinatory content.
We propose a dual-angle evaluated retrieval-augmented generation framework textitThink-then-Act'
arXiv Detail & Related papers (2024-06-18T20:51:34Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - Self-Convinced Prompting: Few-Shot Question Answering with Repeated
Introspection [13.608076739368949]
We introduce a novel framework that harnesses the potential of large-scale pre-trained language models.
Our framework processes the output of a typical few-shot chain-of-thought prompt, assesses the correctness of the response, scrutinizes the answer, and ultimately produces a new solution.
arXiv Detail & Related papers (2023-10-08T06:36:26Z) - Improving Meta-learning for Low-resource Text Classification and
Generation via Memory Imitation [87.98063273826702]
We propose a memory imitation meta-learning (MemIML) method that enhances the model's reliance on support sets for task adaptation.
A theoretical analysis is provided to prove the effectiveness of our method.
arXiv Detail & Related papers (2022-03-22T12:41:55Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Fact is a suite of two factual correction models that leverages knowledge learned from question answering models to make corrections in system-generated summaries via span selection.
Our models employ single or multi-masking strategies to either iteratively or auto-regressively replace entities in order to ensure semantic consistency w.r.t. the source text.
Experiments show that our models significantly boost the factual consistency of system-generated summaries without sacrificing summary quality in terms of both automatic metrics and human evaluation.
arXiv Detail & Related papers (2020-10-06T02:51:02Z) - Probing Linguistic Features of Sentence-Level Representations in Neural
Relation Extraction [80.38130122127882]
We introduce 14 probing tasks targeting linguistic properties relevant to neural relation extraction (RE)
We use them to study representations learned by more than 40 different encoder architecture and linguistic feature combinations trained on two datasets.
We find that the bias induced by the architecture and the inclusion of linguistic features are clearly expressed in the probing task performance.
arXiv Detail & Related papers (2020-04-17T09:17:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.