Towards a unified and verified understanding of group-operation networks
- URL: http://arxiv.org/abs/2410.07476v3
- Date: Fri, 24 Jan 2025 23:41:37 GMT
- Title: Towards a unified and verified understanding of group-operation networks
- Authors: Wilson Wu, Louis Jaburi, Jacob Drori, Jason Gross,
- Abstract summary: We investigate the internals of one-hidden-layer neural networks trained on the binary operation of finite groups.
We produce a more complete description of such models in a step towards unifying the explanations of previous works.
- Score: 0.8305049591788082
- License:
- Abstract: A recent line of work in mechanistic interpretability has focused on reverse-engineering the computation performed by neural networks trained on the binary operation of finite groups. We investigate the internals of one-hidden-layer neural networks trained on this task, revealing previously unidentified structure and producing a more complete description of such models in a step towards unifying the explanations of previous works (Chughtai et al., 2023; Stander et al., 2024). Notably, these models approximate equivariance in each input argument. We verify that our explanation applies to a large fraction of networks trained on this task by translating it into a compact proof of model performance, a quantitative evaluation of the extent to which we faithfully and concisely explain model internals. In the main text, we focus on the symmetric group S5. For models trained on this group, our explanation yields a guarantee of model accuracy that runs 3x faster than brute force and gives a >=95% accuracy bound for 45% of the models we trained. We were unable to obtain nontrivial non-vacuous accuracy bounds using only explanations from previous works.
Related papers
- Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
We propose a framework that acquires more explainable activation heatmaps and simultaneously increase the model performance.
Specifically, our framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning.
Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations.
arXiv Detail & Related papers (2024-08-08T17:20:08Z) - Arithmetic in Transformers Explained [1.8434042562191815]
We analyze 44 autoregressive transformer models trained on addition, subtraction, or both.
We show that the addition models converge on a common logical algorithm, with most models achieving >99.999% prediction accuracy.
We introduce a reusable library of mechanistic interpretability tools to define, locate, and visualize these algorithmic circuits.
arXiv Detail & Related papers (2024-02-04T21:33:18Z) - Reconciliation of Pre-trained Models and Prototypical Neural Networks in
Few-shot Named Entity Recognition [35.34238362639678]
We propose a one-line-code normalization method to reconcile such a mismatch with empirical and theoretical grounds.
Our work also provides an analytical viewpoint for addressing the general problems in few-shot name entity recognition.
arXiv Detail & Related papers (2022-11-07T02:33:45Z) - Don't Explain Noise: Robust Counterfactuals for Randomized Ensembles [50.81061839052459]
We formalize the generation of robust counterfactual explanations as a probabilistic problem.
We show the link between the robustness of ensemble models and the robustness of base learners.
Our method achieves high robustness with only a small increase in the distance from counterfactual explanations to their initial observations.
arXiv Detail & Related papers (2022-05-27T17:28:54Z) - Unifying Language Learning Paradigms [96.35981503087567]
We present a unified framework for pre-training models that are universally effective across datasets and setups.
We show how different pre-training objectives can be cast as one another and how interpolating between different objectives can be effective.
Our model also achieve strong results at in-context learning, outperforming 175B GPT-3 on zero-shot SuperGLUE and tripling the performance of T5-XXL on one-shot summarization.
arXiv Detail & Related papers (2022-05-10T19:32:20Z) - Dense Unsupervised Learning for Video Segmentation [49.46930315961636]
We present a novel approach to unsupervised learning for video object segmentation (VOS)
Unlike previous work, our formulation allows to learn dense feature representations directly in a fully convolutional regime.
Our approach exceeds the segmentation accuracy of previous work despite using significantly less training data and compute power.
arXiv Detail & Related papers (2021-11-11T15:15:11Z) - Deep Ensembles for Low-Data Transfer Learning [21.578470914935938]
We study different ways of creating ensembles from pre-trained models.
We show that the nature of pre-training itself is a performant source of diversity.
We propose a practical algorithm that efficiently identifies a subset of pre-trained models for any downstream dataset.
arXiv Detail & Related papers (2020-10-14T07:59:00Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z) - Reachable Sets of Classifiers and Regression Models: (Non-)Robustness
Analysis and Robust Training [1.0878040851638]
We analyze and enhance robustness properties of both classifiers and regression models.
Specifically, we verify (non-)robustness, propose a robust training procedure, and show that our approach outperforms adversarial attacks.
Second, we provide techniques to distinguish between reliable and non-reliable predictions for unlabeled inputs, to quantify the influence of each feature on a prediction, and compute a feature ranking.
arXiv Detail & Related papers (2020-07-28T10:58:06Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z) - The Gaussian equivalence of generative models for learning with shallow
neural networks [30.47878306277163]
We study the performance of neural networks trained on data drawn from pre-trained generative models.
We provide three strands of rigorous, analytical and numerical evidence corroborating this equivalence.
These results open a viable path to the theoretical study of machine learning models with realistic data.
arXiv Detail & Related papers (2020-06-25T21:20:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.