論文の概要: Efficient Generation of Molecular Clusters with Dual-Scale Equivariant Flow Matching
- arxiv url: http://arxiv.org/abs/2410.07539v1
- Date: Thu, 10 Oct 2024 02:17:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 16:26:23.071211
- Title: Efficient Generation of Molecular Clusters with Dual-Scale Equivariant Flow Matching
- Title(参考訳): 2次元等変流マッチングによる分子クラスターの効率的な生成
- Authors: Akshay Subramanian, Shuhui Qu, Cheol Woo Park, Sulin Liu, Janghwan Lee, Rafael Gómez-Bombarelli,
- Abstract要約: トレーニングと推論を粗い粒度と全原子ステージに分離する2次元フローマッチング法を開発した。
MDシミュレーションにより得られたY6分子クラスターのデータセット上で,本手法の有効性を示す。
- 参考スコア(独自算出の注目度): 5.909830898977327
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Amorphous molecular solids offer a promising alternative to inorganic semiconductors, owing to their mechanical flexibility and solution processability. The packing structure of these materials plays a crucial role in determining their electronic and transport properties, which are key to enhancing the efficiency of devices like organic solar cells (OSCs). However, obtaining these optoelectronic properties computationally requires molecular dynamics (MD) simulations to generate a conformational ensemble, a process that can be computationally expensive due to the large system sizes involved. Recent advances have focused on using generative models, particularly flow-based models as Boltzmann generators, to improve the efficiency of MD sampling. In this work, we developed a dual-scale flow matching method that separates training and inference into coarse-grained and all-atom stages and enhances both the accuracy and efficiency of standard flow matching samplers. We demonstrate the effectiveness of this method on a dataset of Y6 molecular clusters obtained through MD simulations, and we benchmark its efficiency and accuracy against single-scale flow matching methods.
- Abstract(参考訳): アモルファス分子固体は、機械的柔軟性と溶液処理性のため、無機半導体の代替として有望である。
これらの材料の包装構造は、有機太陽電池(OSC)などの装置の効率を高める鍵となる電子的・輸送的特性を決定する上で重要な役割を担っている。
しかしながら、これらの光電子特性を計算的に取得するには、コンフォメーションアンサンブルを生成するために分子動力学(MD)シミュレーションが必要である。
近年の進歩はジェネレーティブモデル、特にフローベースモデルをボルツマン・ジェネレータとして使用することに集中し、MDサンプリングの効率を改善している。
本研究では, トレーニングと推論を粗粒度と全原子ステージに分離し, 標準流量整合サンプリング器の精度と効率を両立させる2次元フローマッチング法を開発した。
MDシミュレーションにより得られたY6分子クラスターのデータセット上で,本手法の有効性を実証し,その効率と精度を単スケールフローマッチング法と比較した。
関連論文リスト
- Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
本稿では,ペロブスカイト・メムリスタの製作を同時に最適化し,ロバストなアナログDNNを開発するための相乗的手法を提案する。
BO誘導ノイズインジェクションを利用したトレーニング戦略であるBayesMultiを開発した。
我々の統合されたアプローチは、より深くより広いネットワークでのアナログコンピューティングの使用を可能にし、最大100倍の改善を実現します。
論文 参考訳(メタデータ) (2024-12-03T19:20:08Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) は拡散モデルにおける条件生成の新しい手法である。
適応的に制御されたプラグアンドプレイの"オンライン"ガイダンスを拡散モデルに統合し、サンプルを所望の特性に向けて駆動する。
論文 参考訳(メタデータ) (2024-11-01T12:59:25Z) - Multi-task learning for molecular electronic structure approaching coupled-cluster accuracy [9.81014501502049]
金標準CCSD(T)計算をトレーニングデータとして,有機分子の電子構造を統一した機械学習手法を開発した。
炭化水素分子を用いたモデルでは, 計算コストと様々な量子化学特性の予測精度において, 広範に用いられているハイブリッド関数と二重ハイブリッド関数でDFTより優れていた。
論文 参考訳(メタデータ) (2024-05-09T19:51:27Z) - Active learning of Boltzmann samplers and potential energies with quantum mechanical accuracy [1.7633275579210346]
我々は,強化サンプリングと深層生成モデルを組み合わせるアプローチと,機械学習ポテンシャルの能動的学習を併用したアプローチを開発する。
本手法を用いて, 医療・生物学分野における多種多様なシステム群に属する超小型の銀ナノクラスターの異性化について検討する。
論文 参考訳(メタデータ) (2024-01-29T19:01:31Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - NNP/MM: Accelerating molecular dynamics simulations with machine
learning potentials and molecular mechanic [38.50309739333058]
ニューラルネットワーク電位(NNP)と分子力学(MM)を組み合わせたハイブリッド手法(NNP/MM)の最適化実装を提案する。
このアプローチは、小さな分子のようなシステムの一部をNNPを用いてモデル化し、残りのシステムにMMを用いて効率を向上する。
これにより, シミュレーション速度を5倍に向上し, 複合体毎の1マイクロ秒の同時サンプリングを実現し, この種のシミュレーションで報告された最長のシミュレーションとなった。
論文 参考訳(メタデータ) (2022-01-20T10:57:20Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - CASTELO: Clustered Atom Subtypes aidEd Lead Optimization -- a combined
machine learning and molecular modeling method [2.8381402107366034]
我々は、リード最適化ワークフローを自動化する機械学習と分子モデリングを組み合わせたアプローチを提案する。
本手法は, 薬剤の有効性向上に有効な, ホットスポットの新規なヒントを提供する。
論文 参考訳(メタデータ) (2020-11-27T15:41:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。