論文の概要: Imitation Learning with Limited Actions via Diffusion Planners and Deep Koopman Controllers
- arxiv url: http://arxiv.org/abs/2410.07584v1
- Date: Thu, 10 Oct 2024 03:33:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 16:06:31.106967
- Title: Imitation Learning with Limited Actions via Diffusion Planners and Deep Koopman Controllers
- Title(参考訳): 拡散プランナーとディープクープマン制御器による限定動作による模倣学習
- Authors: Jianxin Bi, Kelvin Lim, Kaiqi Chen, Yifei Huang, Harold Soh,
- Abstract要約: 本稿では,逆ダイナミクスコントローラのアクションデータ効率向上を目的としたプランテイン制御フレームワークを提案する。
具体的には、Deep Koopman Operatorフレームワークを用いて力学系をモデル化し、観測のみの軌跡を用いて潜在動作表現を学習する。
この潜在表現は、線形アクションデコーダを用いて実高次元連続的なアクションに効果的にマッピングすることができる。
- 参考スコア(独自算出の注目度): 23.292429025366417
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in diffusion-based robot policies have demonstrated significant potential in imitating multi-modal behaviors. However, these approaches typically require large quantities of demonstration data paired with corresponding robot action labels, creating a substantial data collection burden. In this work, we propose a plan-then-control framework aimed at improving the action-data efficiency of inverse dynamics controllers by leveraging observational demonstration data. Specifically, we adopt a Deep Koopman Operator framework to model the dynamical system and utilize observation-only trajectories to learn a latent action representation. This latent representation can then be effectively mapped to real high-dimensional continuous actions using a linear action decoder, requiring minimal action-labeled data. Through experiments on simulated robot manipulation tasks and a real robot experiment with multi-modal expert demonstrations, we demonstrate that our approach significantly enhances action-data efficiency and achieves high task success rates with limited action data.
- Abstract(参考訳): 拡散型ロボット政策の最近の進歩は、マルチモーダルな動作を模倣する大きな可能性を示している。
しかしながら、これらのアプローチは一般的に、対応するロボットアクションラベルと組み合わせた大量のデモデータを必要とし、かなりのデータ収集負担を発生させる。
本研究では,観測実証データを活用することで,逆動的制御器の動作データ効率を向上させるためのプランテイン制御フレームワークを提案する。
具体的には、Deep Koopman Operatorフレームワークを用いて力学系をモデル化し、観測のみの軌跡を用いて潜在動作表現を学習する。
この潜在表現は、線形アクションデコーダを用いて実の高次元連続的なアクションに効果的にマッピングすることができ、最小のアクションラベルデータを必要とする。
シミュレーションされたロボット操作タスクの実験と,マルチモーダルな専門家による実ロボット実験を通じて,本手法が行動データ効率を大幅に向上し,限られた行動データで高いタスク成功率を達成することを実証した。
関連論文リスト
- Reinforcement Learning with Action Sequence for Data-Efficient Robot Learning [62.3886343725955]
本稿では,行動列上のQ値を出力する批判ネットワークを学習する新しいRLアルゴリズムを提案する。
提案アルゴリズムは,現在および将来の一連の行動の実行結果を学習するために値関数を明示的に訓練することにより,ノイズのある軌道から有用な値関数を学習することができる。
論文 参考訳(メタデータ) (2024-11-19T01:23:52Z) - SAM-E: Leveraging Visual Foundation Model with Sequence Imitation for Embodied Manipulation [62.58480650443393]
Segment Anything (SAM) は、一般化可能なシーン理解とシーケンス模倣のための視覚境界モデルである。
我々は,単一パスにおけるアクションシーケンスの予測を可能にする,新しいマルチチャネルヒートマップを開発した。
論文 参考訳(メタデータ) (2024-05-30T00:32:51Z) - Information-driven Affordance Discovery for Efficient Robotic Manipulation [14.863105174430087]
環境との双方向な相互作用はこの問題を軽減することができると我々は主張する。
我々は,本手法の理論的正当性を提供し,シミュレーションと実世界の課題の両方において,そのアプローチを実証的に検証する。
IDAをダブした本手法は,複数のアクションプリミティブに対する視覚的アベイランスの効率的な発見を可能にする。
論文 参考訳(メタデータ) (2024-05-06T21:25:51Z) - AdaDemo: Data-Efficient Demonstration Expansion for Generalist Robotic Agent [75.91274222142079]
本研究では,汎用ロボットエージェントの学習を容易にするために,データ効率のよい方法で実演をスケールアップすることを目的とする。
AdaDemoは、デモデータセットを積極的に継続的に拡張することで、マルチタスクポリシー学習を改善するように設計されたフレームワークである。
論文 参考訳(メタデータ) (2024-04-11T01:59:29Z) - Unsupervised Learning of Effective Actions in Robotics [0.9374652839580183]
ロボット工学における現在の最先端のアクション表現は、ロボットのアクションに対する適切な効果駆動学習を欠いている。
連続運動空間の離散化と「アクションプロトタイプ」生成のための教師なしアルゴリズムを提案する。
シミュレーションされた階段登上補強学習課題について,本手法の評価を行った。
論文 参考訳(メタデータ) (2024-04-03T13:28:52Z) - Deep Learning for Koopman-based Dynamic Movement Primitives [0.0]
実証から学ぶために,クープマン演算子と動的運動プリミティブの理論を結合して新しいアプローチを提案する。
我々のアプローチは glsadmd と呼ばれ、非線形力学系を線形潜在空間に射影し、解が所望の複素運動を再現する。
我々の結果は、LASAハンドライトデータセット上の拡張動的モード分解に匹敵するが、わずかな文字のトレーニングしか行わない。
論文 参考訳(メタデータ) (2023-12-06T07:33:22Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
拡散値関数(DVF)と呼ばれる単純なアルゴリズムを提案する。
拡散モデルを用いて環境-ロボット相互作用の連成多段階モデルを学ぶ。
本稿では,DVFを用いて複数のコントローラの状態を効率よく把握する方法を示す。
論文 参考訳(メタデータ) (2023-06-09T18:40:55Z) - AlphaBlock: Embodied Finetuning for Vision-Language Reasoning in Robot
Manipulation [50.737355245505334]
本稿では,ロボット操作タスクにおける高レベル認知能力を学習するための新しいフレームワークを提案する。
得られたデータセットAlphaBlockは、多段階のテキストプランとペア観測による35の包括的なハイレベルタスクで構成されている。
論文 参考訳(メタデータ) (2023-05-30T09:54:20Z) - Learning Transferable Motor Skills with Hierarchical Latent Mixture
Policies [37.09286945259353]
階層的混合潜時変動モデルを用いて,データから抽象運動スキルを学習する手法を提案する。
提案手法は,オフラインデータを異なる実行動作に効果的にクラスタ化することができることを示す。
論文 参考訳(メタデータ) (2021-12-09T17:37:14Z) - Visual Imitation Made Easy [102.36509665008732]
本稿では,ロボットへのデータ転送を容易にしながら,データ収集プロセスを単純化する,模倣のための代替インターフェースを提案する。
我々は、データ収集装置やロボットのエンドエフェクターとして、市販のリーチ・グラブラー補助具を使用する。
我々は,非包括的プッシュと包括的積み重ねという2つの課題について実験的に評価した。
論文 参考訳(メタデータ) (2020-08-11T17:58:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。