Spin systems as quantum simulators of quantum field theories in curved spacetimes
- URL: http://arxiv.org/abs/2410.07587v1
- Date: Thu, 10 Oct 2024 03:38:26 GMT
- Title: Spin systems as quantum simulators of quantum field theories in curved spacetimes
- Authors: Shunichiro Kinoshita, Keiju Murata, Daisuke Yamamoto, Ryosuke Yoshii,
- Abstract summary: We demonstrate that a quantum field theory (QFT) in general two-dimensional curved spacetimes can be realized by a system of quantum spins or qubits.
According to the dictionary, the QFT of Majorana fermions on the FLRW metric corresponds to the Ising model with a time-dependent transverse magnetic field.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate that a quantum field theory (QFT) in general two-dimensional curved spacetimes can be realized by a system of quantum spins or qubits. We consider a spin-1/2 model on a one-dimensional ring with spatially and temporally varying exchange couplings and magnetic fields. This model reduces to a QFT of Majorana fermions in the continuum limit. From this correspondence, we establish a dictionary for translating between the spacetime-dependent parameters of the spin model and the general metric on which the QFT is defined. After addressing the general case, we consider the Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) metric as a simple example. According to the dictionary, the QFT of Majorana fermions on the FLRW metric corresponds to the Ising model with a time-dependent transverse magnetic field. We demonstrate that the production of Majorana particles in the expanding universe can be simulated with the transverse-field Ising model by increasing the strength of the magnetic field. Furthermore, we examine the Unruh effect through the spin system by using our prescription and show the direct relation between the entanglement (or modular) Hamiltonian in the spin system and the Rindler Hamiltonian. This approach provides an experimentally viable system for probing various phenomena in QFT within curved spacetime, while also opening the door to uncovering nontrivial phenomena in spin systems inspired by curved spacetime physics. It offers fresh perspectives on both QFT in curved spacetimes and quantum many-body spin systems, revealing profound connections between these fields.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Quantum fluctuation theorem in a curved spacetime [0.0]
We report a fully general relativistic detailed quantum fluctuation theorem based on the two point measurement scheme.
We demonstrate how the spacetime curvature can produce entropy in a localized quantum system moving in a general spacetime.
arXiv Detail & Related papers (2024-05-06T23:16:50Z) - Quantum Annealing in Sherrington-Kirkpatrick Spin Glass in Presence of
Time-Dependent Longitudinal Field [0.0]
We numerically solve the time-dependent Schr"odinger equation of the total Hamiltonian when both the fields are made time-dependent and eventually vanish at the same time.
We find, from our exact diaginalization results for small system sizes, evidence for quantum tunneling induced disappearance of the classical Almeida-Thouless phase boundary.
arXiv Detail & Related papers (2023-09-21T06:48:03Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Quantum field simulator for dynamics in curved spacetime [0.0]
We show a quantum field simulator in a two-dimensional Bose-Einstein condensate with a trap and adjustable interaction strength.
We explicitly show the realisation of spacetimes with positive and negative spatial curvature by wave packet propagation.
We find quantitative agreement with new analytical predictions for different curvatures in time and space.
arXiv Detail & Related papers (2022-02-21T17:52:50Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - The coherence of quantum dot confined electron- and hole-spin in low
external magnetic field [0.0]
We show for the first time that the spin purity performs complex temporal oscillations.
Our studies are essential for the design and optimization of quantum-dot-based entangled multi-photon sources.
arXiv Detail & Related papers (2021-08-11T12:00:30Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.