A Variational Bayesian Inference Theory of Elasticity and Its Mixed Probabilistic Finite Element Method for Inverse Deformation Solutions in Any Dimension
- URL: http://arxiv.org/abs/2410.07605v2
- Date: Sun, 13 Oct 2024 18:17:53 GMT
- Title: A Variational Bayesian Inference Theory of Elasticity and Its Mixed Probabilistic Finite Element Method for Inverse Deformation Solutions in Any Dimension
- Authors: Chao Wang, Shaofan Li,
- Abstract summary: The elastic strain energy is used as a prior in a Bayesian inference network.
The proposed method is able to inversely predict continuum deformation mappings with strong discontinuity or fracture.
- Score: 3.9900555221077396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we have developed a variational Bayesian inference theory of elasticity, which is accomplished by using a mixed Variational Bayesian inference Finite Element Method (VBI-FEM) that can be used to solve the inverse deformation problems of continua. In the proposed variational Bayesian inference theory of continuum mechanics, the elastic strain energy is used as a prior in a Bayesian inference network, which can intelligently recover the detailed continuum deformation mappings with only given the information on the deformed and undeformed continuum body shapes without knowing the interior deformation and the precise actual boundary conditions, both traction as well as displacement boundary conditions, and the actual material constitutive relation. Moreover, we have implemented the related finite element formulation in a computational probabilistic mechanics framework. To numerically solve mixed variational problem, we developed an operator splitting or staggered algorithm that consists of the finite element (FE) step and the Bayesian learning (BL) step as an analogue of the well-known the Expectation-Maximization (EM) algorithm. By solving the mixed probabilistic Galerkin variational problem, we demonstrated that the proposed method is able to inversely predict continuum deformation mappings with strong discontinuity or fracture without knowing the external load conditions. The proposed method provides a robust machine intelligent solution for the long-sought-after inverse problem solution, which has been a major challenge in structure failure forensic pattern analysis in past several decades. The proposed method may become a promising artificial intelligence-based inverse method for solving general partial differential equations.
Related papers
- Weak neural variational inference for solving Bayesian inverse problems without forward models: applications in elastography [1.6385815610837167]
We introduce a novel, data-driven approach for solving high-dimensional Bayesian inverse problems based on partial differential equations (PDEs)
The Weak Neural Variational Inference (WNVI) method complements real measurements with virtual observations derived from the physical model.
We demonstrate that WNVI is not only as accurate and more efficient than traditional methods that rely on repeatedly solving the (non-linear) forward problem as a black-box.
arXiv Detail & Related papers (2024-07-30T09:46:03Z) - Stochastic full waveform inversion with deep generative prior for uncertainty quantification [0.0]
Full Waveform Inversion (FWI) involves solving a nonlinear and often non-unique inverse problem.
FWI presents challenges such as local minima trapping and inadequate handling of inherent uncertainties.
We propose leveraging deep generative models as the prior distribution of geophysical parameters for Bayesian inversion.
arXiv Detail & Related papers (2024-06-07T11:44:50Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - An information field theory approach to Bayesian state and parameter estimation in dynamical systems [0.0]
This paper develops a scalable Bayesian approach to state and parameter estimation suitable for continuous-time, deterministic dynamical systems.
We construct a physics-informed prior probability measure on the function space of system responses so that functions that satisfy the physics are more likely.
arXiv Detail & Related papers (2023-06-03T16:36:43Z) - On Representations of Mean-Field Variational Inference [2.4316550366482357]
We present a framework to analyze mean field variational inference (MFVI) algorithms.
Our approach enables the MFVI problem to be represented in three different manners.
Rigorous guarantees are established to show that a time-discretized implementation of the coordinate ascent variational inference algorithm yields a gradient flow in the limit.
arXiv Detail & Related papers (2022-10-20T16:26:22Z) - SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum
Cocoercive Variational Inequalities [137.6408511310322]
We consider the problem of finite-sum cocoercive variational inequalities.
For strongly monotone problems it is possible to achieve linear convergence to a solution using this method.
arXiv Detail & Related papers (2022-10-12T08:04:48Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Posterior-Aided Regularization for Likelihood-Free Inference [23.708122045184698]
Posterior-Aided Regularization (PAR) is applicable to learning the density estimator, regardless of the model structure.
We provide a unified estimation method of PAR to estimate both reverse KL term and mutual information term with a single neural network.
arXiv Detail & Related papers (2021-02-15T16:59:30Z) - The Variational Method of Moments [65.91730154730905]
conditional moment problem is a powerful formulation for describing structural causal parameters in terms of observables.
Motivated by a variational minimax reformulation of OWGMM, we define a very general class of estimators for the conditional moment problem.
We provide algorithms for valid statistical inference based on the same kind of variational reformulations.
arXiv Detail & Related papers (2020-12-17T07:21:06Z) - Stein Variational Model Predictive Control [130.60527864489168]
Decision making under uncertainty is critical to real-world, autonomous systems.
Model Predictive Control (MPC) methods have demonstrated favorable performance in practice, but remain limited when dealing with complex distributions.
We show that this framework leads to successful planning in challenging, non optimal control problems.
arXiv Detail & Related papers (2020-11-15T22:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.