Almost Minimax Optimal Best Arm Identification in Piecewise Stationary Linear Bandits
- URL: http://arxiv.org/abs/2410.07638v1
- Date: Thu, 10 Oct 2024 06:15:42 GMT
- Title: Almost Minimax Optimal Best Arm Identification in Piecewise Stationary Linear Bandits
- Authors: Yunlong Hou, Vincent Y. F. Tan, Zixin Zhong,
- Abstract summary: We propose a piecewise stationary linear bandit (PSLB) model where the quality of an arm is measured by its return averaged over all contexts.
PS$varepsilon$BAI$+$ is guaranteed to identify an $varepsilon$-optimal arm with probability $ge 1-delta$ and with a minimal number of samples.
- Score: 55.957560311008926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a {\em novel} piecewise stationary linear bandit (PSLB) model, where the environment randomly samples a context from an unknown probability distribution at each changepoint, and the quality of an arm is measured by its return averaged over all contexts. The contexts and their distribution, as well as the changepoints are unknown to the agent. We design {\em Piecewise-Stationary $\varepsilon$-Best Arm Identification$^+$} (PS$\varepsilon$BAI$^+$), an algorithm that is guaranteed to identify an $\varepsilon$-optimal arm with probability $\ge 1-\delta$ and with a minimal number of samples. PS$\varepsilon$BAI$^+$ consists of two subroutines, PS$\varepsilon$BAI and {\sc Na\"ive $\varepsilon$-BAI} (N$\varepsilon$BAI), which are executed in parallel. PS$\varepsilon$BAI actively detects changepoints and aligns contexts to facilitate the arm identification process. When PS$\varepsilon$BAI and N$\varepsilon$BAI are utilized judiciously in parallel, PS$\varepsilon$BAI$^+$ is shown to have a finite expected sample complexity. By proving a lower bound, we show the expected sample complexity of PS$\varepsilon$BAI$^+$ is optimal up to a logarithmic factor. We compare PS$\varepsilon$BAI$^+$ to baseline algorithms using numerical experiments which demonstrate its efficiency. Both our analytical and numerical results corroborate that the efficacy of PS$\varepsilon$BAI$^+$ is due to the delicate change detection and context alignment procedures embedded in PS$\varepsilon$BAI.
Related papers
- Fast Rates for Bandit PAC Multiclass Classification [73.17969992976501]
We study multiclass PAC learning with bandit feedback, where inputs are classified into one of $K$ possible labels and feedback is limited to whether or not the predicted labels are correct.
Our main contribution is in designing a novel learning algorithm for the agnostic $(varepsilon,delta)$PAC version of the problem.
arXiv Detail & Related papers (2024-06-18T08:54:04Z) - Finding good policies in average-reward Markov Decision Processes without prior knowledge [19.89784209009327]
We revisit the identification of an $varepsilon$-optimal policy in average-reward Decision (MDP)
By relying on a diameter estimation procedure, we propose the first algorithm for $(varepsilon,delta)$-PAC-PAC policy identification.
arXiv Detail & Related papers (2024-05-27T12:24:14Z) - Efficient Sampling of Stochastic Differential Equations with Positive
Semi-Definite Models [91.22420505636006]
This paper deals with the problem of efficient sampling from a differential equation, given the drift function and the diffusion matrix.
It is possible to obtain independent and identically distributed (i.i.d.) samples at precision $varepsilon$ with a cost that is $m2 d log (1/varepsilon)$
Our results suggest that as the true solution gets smoother, we can circumvent the curse of dimensionality without requiring any sort of convexity.
arXiv Detail & Related papers (2023-03-30T02:50:49Z) - Near Sample-Optimal Reduction-based Policy Learning for Average Reward
MDP [58.13930707612128]
This work considers the sample complexity of obtaining an $varepsilon$-optimal policy in an average reward Markov Decision Process (AMDP)
We prove an upper bound of $widetilde O(H varepsilon-3 ln frac1delta)$ samples per state-action pair, where $H := sp(h*)$ is the span of bias of any optimal policy, $varepsilon$ is the accuracy and $delta$ is the failure probability.
arXiv Detail & Related papers (2022-12-01T15:57:58Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - On the complexity of All $\varepsilon$-Best Arms Identification [2.1485350418225244]
We consider the problem of identifying all the $varepsilon$-optimal arms in a finite multi-armed bandit with Gaussian rewards.
We propose a Track-and-Stop algorithm that identifies the set of $varepsilon$-good arms w.h.p and enjoys optimality (when $delta$ goes to zero) in terms of the expected sample complexity.
arXiv Detail & Related papers (2022-02-13T10:54:52Z) - Sampling from Log-Concave Distributions with Infinity-Distance
Guarantees and Applications to Differentially Private Optimization [33.38289436686841]
We present an algorithm that outputs a point from a distributionO(varepsilon)$close to $$ in infinity-distance.
We also present a "soft-pi" version of the Dikin walk which may be independent interest.
arXiv Detail & Related papers (2021-11-07T13:44:50Z) - The Price of Tolerance in Distribution Testing [31.10049510641336]
We show the sample complexity to be [fracsqrtnvarepsilon2 + fracnlog n cdotmaxleftfracvarepsilon2, providing a smooth tradeoff between the two previously known cases.
We also provide a similar characterization for the problem of tolerant equivalence testing, where both $p$ and $q$ are unknown.
arXiv Detail & Related papers (2021-06-25T03:59:42Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
We study the problem of high-dimensional robust linear regression where a learner is given access to $n$ samples from the generative model $Y = langle X,w* rangle + epsilon$
We propose estimators for this problem under two settings: (i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance and (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
arXiv Detail & Related papers (2020-07-16T06:44:44Z) - Robust Gaussian Covariance Estimation in Nearly-Matrix Multiplication
Time [14.990725929840892]
We show an algorithm that runs in time $widetildeO(T(N, d) log kappa / mathrmpoly (varepsilon))$, where $T(N, d)$ is the time it takes to multiply a $d times N$ matrix by its transpose.
Our runtime matches that of the fastest algorithm for covariance estimation without outliers, up to poly-logarithmic factors.
arXiv Detail & Related papers (2020-06-23T20:21:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.