論文の概要: StablePrompt: Automatic Prompt Tuning using Reinforcement Learning for Large Language Models
- arxiv url: http://arxiv.org/abs/2410.07652v1
- Date: Thu, 10 Oct 2024 06:35:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 15:46:26.774394
- Title: StablePrompt: Automatic Prompt Tuning using Reinforcement Learning for Large Language Models
- Title(参考訳): StablePrompt:大規模言語モデルのための強化学習を用いた自動プロンプトチューニング
- Authors: Minchan Kwon, Gaeun Kim, Jongsuk Kim, Haeil Lee, Junmo Kim,
- Abstract要約: 強化学習(Reinforcement Learning, RL)は, 即時チューニングに広く用いられているが, その固有の不安定性と環境依存性は, 実際にの使用を困難にしている。
トレーニング安定性と探索空間のバランスを保ち、RLの不安定性を軽減し、高性能なプロンプトを生成するStablePromptを提案する。
- 参考スコア(独自算出の注目度): 21.556184207901115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Finding appropriate prompts for the specific task has become an important issue as the usage of Large Language Models (LLM) has expanded. Reinforcement Learning (RL) is widely used for prompt tuning, but its inherent instability and environmental dependency make it difficult to use in practice. In this paper, we propose StablePrompt, which strikes a balance between training stability and search space, mitigating the instability of RL and producing high-performance prompts. We formulate prompt tuning as an online RL problem between the agent and target LLM and introduce Adaptive Proximal Policy Optimization (APPO). APPO introduces an LLM anchor model to adaptively adjust the rate of policy updates. This allows for flexible prompt search while preserving the linguistic ability of the pre-trained LLM. StablePrompt outperforms previous methods on various tasks including text classification, question answering, and text generation. Our code can be found in github.
- Abstract(参考訳): LLM(Large Language Models)の利用が拡大するにつれて、特定のタスクの適切なプロンプトを見つけることが重要な問題となっている。
強化学習(Reinforcement Learning, RL)は, 即時チューニングに広く用いられているが, その固有の不安定性と環境依存性は, 実際にの使用を困難にしている。
本稿では,学習安定性と探索空間のバランスを保ち,RLの不安定性を軽減し,高性能なプロンプトを生成するStablePromptを提案する。
本稿では,エージェントとターゲットLLM間のオンラインRL問題としてプロンプトチューニングを定式化し,Adaptive Proximal Policy Optimization (APPO)を導入する。
APPOはポリシー更新率を適応的に調整するLLMアンカーモデルを導入している。
これにより、事前訓練されたLLMの言語能力を維持しながら、柔軟なプロンプトサーチが可能となる。
StablePromptは、テキスト分類、質問応答、テキスト生成など、さまざまなタスクにおいて、以前のメソッドよりも優れています。
私たちのコードはgithubで見つけることができます。
関連論文リスト
- Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Hard Prompts Made Interpretable: Sparse Entropy Regularization for Prompt Tuning with RL [29.01858866450715]
ソフトQ-ラーニングを利用した最適なプロンプトを見つけることを目的としたRLPromptを提案する。
結果は有望な結果を示す一方で,プロンプトが不自然に現れることがしばしばあり,その解釈可能性を妨げることが確認されている。
この制限をスパルス・ツァリスエントロピー正規化(英語版)を用いて解決する。
論文 参考訳(メタデータ) (2024-07-20T03:10:19Z) - Soft Prompting for Unlearning in Large Language Models [11.504012974208466]
この研究は、データ保護規制を動機とした大規模言語モデルのための機械学習の研究に焦点をあてる。
我々はtextbfUntextbflearning (SPUL) のための textbfSoft textbfPrompting フレームワークを提案する。
本研究では,提案手法の厳密な評価を行い,SPULが実用性と忘れとのトレードオフを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2024-06-17T19:11:40Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Self-regulating Prompts: Foundational Model Adaptation without
Forgetting [112.66832145320434]
本稿では,PromptSRCと呼ばれる自己正規化フレームワークを提案する。
PromptSRCはタスク固有の汎用表現とタスクに依存しない汎用表現の両方に最適化するプロンプトを導く。
論文 参考訳(メタデータ) (2023-07-13T17:59:35Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
本稿では、強化学習(RL)を用いた離散的高速最適化手法RLPromptを提案する。
RLPromptは、マスク付きジベリッシュ(例:grammaBERT)や左から右へのモデル(例:GPT)など、様々な種類のLMに柔軟に適用可能である。
少数ショット分類と教師なしテキストスタイル転送の実験は、既存のファインタニングやプロンプト手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-05-25T07:50:31Z) - AdaPrompt: Adaptive Model Training for Prompt-based NLP [77.12071707955889]
PLMの継続事前学習のための外部データを適応的に検索するAdaPromptを提案する。
5つのNLPベンチマークの実験結果から、AdaPromptは数ショット設定で標準PLMよりも改善可能であることが示された。
ゼロショット設定では、標準のプロンプトベースの手法を26.35%の相対誤差削減で上回ります。
論文 参考訳(メタデータ) (2022-02-10T04:04:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。