論文の概要: TDDSR: Single-Step Diffusion with Two Discriminators for Super Resolution
- arxiv url: http://arxiv.org/abs/2410.07663v1
- Date: Thu, 10 Oct 2024 07:12:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 15:46:26.757530
- Title: TDDSR: Single-Step Diffusion with Two Discriminators for Super Resolution
- Title(参考訳): TDDSR:スーパーレゾリューションのための2つの識別器を備えた単一ステップ拡散
- Authors: Sohwi Kim, Tae-Kyun Kim,
- Abstract要約: 本稿では,効率的な単一ステップ拡散に基づく超解像法であるTDDSRを提案する。
本手法は,教師の事前学習モデルから抽出し,拡散ネットワークに基づいて,単一ステップで超解像を行う。
実世界および顔固有のSRタスク間で有効性を示す実験結果が得られた。
- 参考スコア(独自算出の注目度): 28.174638880324014
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Super-resolution methods are increasingly being specialized for both real-world and face-specific tasks. However, many existing approaches rely on simplistic degradation models, which limits their ability to handle complex and unknown degradation patterns effectively. While diffusion-based super-resolution techniques have recently shown impressive results, they are still constrained by the need for numerous inference steps. To address this, we propose TDDSR, an efficient single-step diffusion-based super-resolution method. Our method, distilled from a pre-trained teacher model and based on a diffusion network, performs super-resolution in a single step. It integrates a learnable downsampler to capture diverse degradation patterns and employs two discriminators, one for high-resolution and one for low-resolution images, to enhance the overall performance. Experimental results demonstrate its effectiveness across real-world and face-specific SR tasks, achieving performance comparable to, or even surpassing, another single-step method, previous state-of-the-art models, and the teacher model.
- Abstract(参考訳): 超解像法は、現実のタスクと顔特有のタスクの両方に特化している。
しかし、既存の多くのアプローチは単純化された劣化モデルに依存しており、複雑で未知の劣化パターンを効果的に扱う能力を制限する。
拡散に基づく超解像法は近年は顕著な結果を示しているが、多くの推論ステップの必要性に制約されている。
これを解決するために,効率的な単一ステップ拡散に基づく超解像法であるTDDSRを提案する。
本手法は,教師の事前学習モデルから抽出し,拡散ネットワークに基づいて,単一ステップで超解像を行う。
学習可能なダウンサンプラーを統合して、さまざまな劣化パターンをキャプチャし、高解像度の画像と低解像度画像の2つの識別器を使用して、全体的なパフォーマンスを向上させる。
実験の結果、実世界のSRタスクと顔固有のSRタスクにまたがってその効果を示し、その性能は1段階の手法、過去の最先端モデル、教師モデルに匹敵する、あるいは超えている。
関連論文リスト
- Distillation-Free One-Step Diffusion for Real-World Image Super-Resolution [81.81748032199813]
蒸留不要1ステップ拡散モデルを提案する。
具体的には、敵対的訓練に参加するためのノイズ認識識別器(NAD)を提案する。
我々は、エッジ対応disTS(EA-DISTS)による知覚損失を改善し、詳細な情報を生成するモデルの能力を向上させる。
論文 参考訳(メタデータ) (2024-10-05T16:41:36Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
画像超解像のための効果的な拡散変換器(DiT-SR)を設計する。
実際には、DiT-SRは全体のU字型アーキテクチャを活用し、すべての変圧器ブロックに対して均一な等方性設計を採用する。
我々は、広く使われているAdaLNの制限を分析し、周波数適応型時間-ステップ条件付けモジュールを提案する。
論文 参考訳(メタデータ) (2024-09-29T07:14:16Z) - Taming Diffusion Prior for Image Super-Resolution with Domain Shift SDEs [36.65594293655289]
DoSSRは、事前訓練された拡散モデルの生成力を生かしたドメインシフト拡散に基づくSRモデルである。
このアプローチの核となるのは、既存の拡散モデルとシームレスに統合されるドメインシフト方程式です。
提案手法は, 合成および実世界のデータセットに対して, 5つのサンプリングステップしか必要とせず, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-09-26T12:16:11Z) - Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
拡散に基づく画像超解像法 (SR) は、事前訓練された大規模なテキスト・画像拡散モデルを先行として活用することにより、顕著な成功を収めた。
本稿では,拡散型SR手法の効率問題に対処する新しい一段階SRモデルを提案する。
既存の微調整戦略とは異なり、SR専用の劣化誘導低ランク適応 (LoRA) モジュールを設計した。
論文 参考訳(メタデータ) (2024-09-25T16:15:21Z) - One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
拡散に基づく画像超解像(SR)法は,低解像度画像から細部まで細部まで,高解像度画像の再構成に有望であることを示す。
近年,拡散型SRモデルの知識蒸留によるサンプリング効率の向上が試みられている。
我々は,効率的な画像超解像を実現するため,TAD-SRというタイムアウェア拡散蒸留法を提案する。
論文 参考訳(メタデータ) (2024-08-14T11:47:22Z) - SinSR: Diffusion-Based Image Super-Resolution in a Single Step [119.18813219518042]
拡散モデルに基づく超解像(SR)法は有望な結果を示す。
しかし、それらの実践的応用は、必要な推論ステップのかなりの数によって妨げられている。
本稿では,SinSRという単一ステップのSR生成を実現するための,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2023-11-23T16:21:29Z) - ResShift: Efficient Diffusion Model for Image Super-resolution by
Residual Shifting [70.83632337581034]
拡散に基づく画像超解像法(SR)は主に低推論速度によって制限される。
本稿では,SRの拡散段数を大幅に削減する新しい,効率的な拡散モデルを提案する。
本手法は,残差をシフトすることで高分解能画像と低分解能画像の間を移動させるマルコフ連鎖を構成する。
論文 参考訳(メタデータ) (2023-07-23T15:10:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。