論文の概要: A Generalization Result for Convergence in Learning-to-Optimize
- arxiv url: http://arxiv.org/abs/2410.07704v2
- Date: Fri, 30 May 2025 14:30:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:52.468692
- Title: A Generalization Result for Convergence in Learning-to-Optimize
- Title(参考訳): 学習と最適化における収束の一般化結果
- Authors: Michael Sucker, Peter Ochs,
- Abstract要約: 機械学習を利用して最適化アルゴリズムを高速化する。
我々は,学習と最適化の収束を研究するための新しい証明ストラテジーを開発した。
- 参考スコア(独自算出の注目度): 4.112909937203119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning-to-optimize leverages machine learning to accelerate optimization algorithms. While empirical results show tremendous improvements compared to classical optimization algorithms, theoretical guarantees are mostly lacking, such that the outcome cannot be reliably assured. Especially, convergence is hardly studied in learning-to-optimize, because conventional convergence guarantees in optimization are based on geometric arguments, which cannot be applied easily to learned algorithms. Thus, we develop a probabilistic framework that resembles classical optimization and allows for transferring geometric arguments into learning-to-optimize. Based on our new proof-strategy, our main theorem is a generalization result for parametric classes of potentially non-smooth, non-convex loss functions and establishes the convergence of learned optimization algorithms to critical points with high probability. This effectively generalizes the results of a worst-case analysis into a probabilistic framework, and frees the design of the learned algorithm from using safeguards.
- Abstract(参考訳): 機械学習を利用して最適化アルゴリズムを高速化する。
実験の結果は古典的な最適化アルゴリズムに比べて大幅に改善されているが、理論的な保証はほとんど欠けており、結果が確実に保証できない。
特に、最適化における従来の収束保証は幾何学的引数に基づいており、学習アルゴリズムに容易に適用できないため、学習と最適化において収束の研究はほとんど行われない。
そこで我々は,古典的最適化に類似した確率的フレームワークを開発し,幾何学的引数を学習から最適化へ転送することを可能にする。
新しい証明ストラテジーに基づいて、我々の主要な定理は、潜在的に非滑らかで非凸な損失関数のパラメトリッククラスに対する一般化結果であり、学習された最適化アルゴリズムを高い確率で臨界点に収束させる。
これにより、最悪のケース分析の結果を確率的フレームワークに効果的に一般化し、学習アルゴリズムの設計をセーフガードの使用から解放する。
関連論文リスト
- A Novel Unified Parametric Assumption for Nonconvex Optimization [53.943470475510196]
非最適化は機械学習の中心であるが、一般の非凸性は弱い収束を保証するため、他方に比べて悲観的すぎる。
非凸アルゴリズムに新しい統一仮定を導入する。
論文 参考訳(メタデータ) (2025-02-17T21:25:31Z) - Learning-to-Optimize with PAC-Bayesian Guarantees: Theoretical Considerations and Practical Implementation [4.239829789304117]
最適学習の設定にはPAC-ベイズ理論を用いる。
証明可能な一般化保証付き最適化アルゴリズムを学習する最初のフレームワークを提示する。
学習アルゴリズムは、(決定論的)最悪のケース分析から得られた関連アルゴリズムを確実に上回ります。
論文 参考訳(メタデータ) (2024-04-04T08:24:57Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Asymptotic convergence of iterative optimization algorithms [1.6328866317851185]
本稿では,反復最適化アルゴリズムの一般的なフレームワークを紹介する。
適切な仮定の下では、収束率を低くすることができる。
私たちは正確な収束率を提供します。
論文 参考訳(メタデータ) (2023-02-24T09:58:56Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
本稿では,主観的最適度と関連するリスク割り当ての公平性に着目し,重要な理論的側面について論じる。
私たちが提供しているアルゴリズムは、予備項の学習、二重表現の最適化、およびそれに対応する公正なリスク割り当てを可能にします。
論文 参考訳(メタデータ) (2023-02-02T22:16:49Z) - PAC-Bayesian Learning of Optimization Algorithms [6.624726878647541]
PAC-Bayes理論を学習最適化の設定に適用する。
証明可能な一般化保証(PAC-bounds)と高収束確率と高収束速度との間の明示的なトレードオフを持つ最適化アルゴリズムを学習する。
この結果は指数族に基づく一般の非有界損失関数に対してPAC-Bayes境界に依存する。
論文 参考訳(メタデータ) (2022-10-20T09:16:36Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
非最適化近似問題を考える。
本稿では,最優先計算を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-11T09:37:04Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。