論文の概要: Dialectical Behavior Therapy Approach to LLM Prompting
- arxiv url: http://arxiv.org/abs/2410.07768v1
- Date: Thu, 10 Oct 2024 09:58:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 15:06:11.509590
- Title: Dialectical Behavior Therapy Approach to LLM Prompting
- Title(参考訳): LLMプロンプトにおける弁証的行動療法
- Authors: Oxana Vitman, Nika Amaglobeli, Paul Plachinda,
- Abstract要約: 大規模言語モデルは、チェーン・オブ・シンクレット(CoT)プロンプト技術を適用する際に、様々な推論タスクに対して最先端の結果を示した。
弁証的行動療法(DBT)にインスパイアされた新しいプロンプト戦略を提案する。
提案手法を応用したプロンプトにより,より小さなモデルにおける結果が大幅に向上することを示す。
- 参考スコア(独自算出の注目度): 1.433758865948252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models demonstrated state-of-the-art results on various reasoning tasks when applying the chain-of-thought (CoT) prompting technique. CoT prompting guides the model into breaking tasks into a few intermediate steps and provides step-by-step demonstrations. However, solving complex reasoning tasks remains a challenge. In this paper, we propose a novel prompting strategy inspired by Dialectical Behavioral Therapy (DBT). DBT, a form of cognitive-behavioral therapy, aims to help individuals cope with stress by developing a system of reasoning. We applied DBT's basic concepts of shaping dialog to construct prompts and conducted experiments on different datasets and LLMs with various numbers of parameters. Our results show that prompts crafted with DBT techniques significantly improve results on smaller models, achieving a 7% increase in accuracy on the StrategyQA, 4.8% on Aqua dataset using 8b parameters model, and a 16.2% increase on the StrategyQA, 5.3% on GSM8K dataset with 14b parameters model.
- Abstract(参考訳): 大規模言語モデルは、チェーン・オブ・シンクレット(CoT)プロンプト技術を適用する際に、様々な推論タスクに対して最先端の結果を示した。
CoTプロンプトはモデルをいくつかの中間ステップに分割し、ステップバイステップのデモを提供する。
しかし、複雑な推論タスクの解決は依然として課題である。
本稿では,DBT(Dialectical Behavioral Therapy)に触発された新しいプロンプト戦略を提案する。
認知行動療法の一種であるDBTは、推論システムを開発することで、個人がストレスに対処することを支援することを目的としている。
我々はDBTの基本概念であるシェーピングダイアログをプロンプトの構築に適用し,様々なパラメータを持つ異なるデータセットとLLMの実験を行った。
以上の結果から,DBT手法を駆使したプロンプトは,より小さなモデルにおける結果を大幅に改善し,StrategyQAでは7%,Aquaデータセットでは4.8%,StrategyQAでは16.2%,GSM8Kデータセットでは5.3%,14bパラメータモデルでは7%の精度向上を実現した。
関連論文リスト
- Chain-of-Reasoning: Towards Unified Mathematical Reasoning in Large Language Models via a Multi-Paradigm Perspective [90.86370957353911]
CoR(Chain-of-Reasoning)は、複数の推論パラダイムを統合する新しい統合フレームワークである。
CoRは異なる推論パラダイムを用いて複数の潜在的な答えを生成し、それらをコヒーレントな最終解へと合成する。
実験の結果,CoR-Math-7Bは現在のSOTAモデルより有意に優れていた。
論文 参考訳(メタデータ) (2025-01-19T16:53:26Z) - EPE-P: Evidence-based Parameter-efficient Prompting for Multimodal Learning with Missing Modalities [20.991711160707755]
モダリティの欠如は、実世界のマルチモーダル学習シナリオにおいて、トレーニングとテストの両方で発生する一般的な課題である。
欠落したモダリティを管理する既存の方法は、しばしば各モダリティや欠落したケースに対して別々のプロンプトを設計する必要がある。
我々はエビデンスに基づくエビデンスを提案する。
事前学習型マルチモーダルネットワークのための新規かつパラメータ効率の高い手法EPE-P。
論文 参考訳(メタデータ) (2024-12-23T16:01:12Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
MLLM(Multimodal large language model)は、多モーダルタスクにおいて大きな可能性を秘めている。
既存の命令チューニングデータセットは、中間的合理性のないフレーズレベルの答えのみを提供する。
そこで本研究では,大規模マルチモーダル・インストラクション・チューニング・データセットを構築するためのスケーラブルで費用対効果の高い手法を提案する。
論文 参考訳(メタデータ) (2024-12-06T18:14:24Z) - The Surprising Effectiveness of Test-Time Training for Abstract Reasoning [64.36534512742736]
モデル推論能力向上のためのメカニズムとして,テストタイムトレーニング(TTT)の有効性を検討する。
TTTはARCタスクのパフォーマンスを大幅に改善し、ベースとなる微調整モデルと比較して最大6倍の精度向上を実現した。
本研究は,ニューラルネットワークモデルにおける抽象的推論改善の道筋として,明示的な記号探索が唯一の道ではないことを示唆している。
論文 参考訳(メタデータ) (2024-11-11T18:59:45Z) - Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
Debias and Denoise Attribution (DDA) と呼ばれる新しいトレーニングデータ属性法を導入する。
提案手法は既存のアプローチよりも優れており,平均91.64%のAUCを実現している。
DDAは、様々なソースとLLaMA2、QWEN2、Mistralのような異なるスケールのモデルに対して、強力な汎用性とスケーラビリティを示す。
論文 参考訳(メタデータ) (2024-10-02T07:14:26Z) - Strategic Chain-of-Thought: Guiding Accurate Reasoning in LLMs through Strategy Elicitation [16.350747493026432]
CoT(Chain-of-Thought)パラダイムは,大規模言語モデル(LLM)の推論能力向上のための重要なアプローチとして登場した。
中間的推論ステップを生成する前に戦略的知識を統合することでLCM性能を向上するための textbfStrategic Chain-of-Thought (SCoT) を提案する。
SCoTは1つのプロンプトの中で2段階のアプローチを採用し、まず効果的な問題解決戦略を導き、次に高品質なCoTパスと最終回答の生成を導くのに使用される。
論文 参考訳(メタデータ) (2024-09-05T06:28:05Z) - Analyzing Persuasive Strategies in Meme Texts: A Fusion of Language Models with Paraphrase Enrichment [0.23020018305241333]
本稿では,ミームテキストにおける説得手法の階層的マルチラベル検出へのアプローチについて述べる。
本研究の範囲は、革新的なトレーニング技術とデータ強化戦略を通じて、モデルパフォーマンスの向上を含む。
論文 参考訳(メタデータ) (2024-07-01T20:25:20Z) - Take a Step Back: Evoking Reasoning via Abstraction in Large Language
Models [122.19845578690466]
Step-Back Promptingは、LLMが抽象化を行い、特定の詳細を含むインスタンスから高レベルの概念と第一原則を導出することを可能にする。
推論を導くために概念と原則を用いることで、LLMはソリューションへの正しい推論パスに従うことで、その能力を大幅に向上します。
論文 参考訳(メタデータ) (2023-10-09T19:48:55Z) - Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning [10.51168925267033]
本稿は,2019年前半から2024年半ばにかけて発行された50以上の論文を対象とした,パラメータ効率の高い微調整手法の体系的概要について述べる。
幅広い手法を網羅し,詳細な方法比較を行う分類法を提案する。
また,15種類のPEFT法を用いて,最大11Bパラメータのモデル上での性能と効率を評価する実験を行った。
論文 参考訳(メタデータ) (2023-03-28T00:06:38Z) - Reframing Instructional Prompts to GPTk's Language [72.69833640335519]
本稿では,モデル設計者が言語モデルに対して効果的なプロンプトを作成するためのリフレーミング手法を提案する。
その結果、リフレーミングはサンプルの複雑さを減らしながら、数ショットの学習性能を14%向上させることがわかった。
GPT3では、大規模なデータセットでモデルやプロンプトをチューニングすることは不可能である。
論文 参考訳(メタデータ) (2021-09-16T09:44:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。