論文の概要: Enhancing Hyperspectral Image Prediction with Contrastive Learning in Low-Label Regime
- arxiv url: http://arxiv.org/abs/2410.07790v1
- Date: Thu, 10 Oct 2024 10:20:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 14:56:00.904925
- Title: Enhancing Hyperspectral Image Prediction with Contrastive Learning in Low-Label Regime
- Title(参考訳): 低ラベルレジームにおけるコントラスト学習によるハイパースペクトル画像予測の強化
- Authors: Salma Haidar, José Oramas,
- Abstract要約: 自己教師付きコントラスト学習は、限られたラベル付きデータの課題に対処するための効果的なアプローチである。
単一ラベルと複数ラベルの分類タスクに対して,本手法の性能を評価する。
- 参考スコア(独自算出の注目度): 0.810304644344495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised contrastive learning is an effective approach for addressing the challenge of limited labelled data. This study builds upon the previously established two-stage patch-level, multi-label classification method for hyperspectral remote sensing imagery. We evaluate the method's performance for both the single-label and multi-label classification tasks, particularly under scenarios of limited training data. The methodology unfolds in two stages. Initially, we focus on training an encoder and a projection network using a contrastive learning approach. This step is crucial for enhancing the ability of the encoder to discern patterns within the unlabelled data. Next, we employ the pre-trained encoder to guide the training of two distinct predictors: one for multi-label and another for single-label classification. Empirical results on four public datasets show that the predictors trained with our method perform better than those trained under fully supervised techniques. Notably, the performance is maintained even when the amount of training data is reduced by $50\%$. This advantage is consistent across both tasks. The method's effectiveness comes from its streamlined architecture. This design allows for retraining the encoder along with the predictor. As a result, the encoder becomes more adaptable to the features identified by the classifier, improving the overall classification performance. Qualitative analysis reveals the contrastive-learning-based encoder's capability to provide representations that allow separation among classes and identify location-based features despite not being explicitly trained for that. This observation indicates the method's potential in uncovering implicit spatial information within the data.
- Abstract(参考訳): 自己教師付きコントラスト学習は、限られたラベル付きデータの課題に対処するための効果的なアプローチである。
本研究は,高スペクトルリモートセンシング画像のための2段階のパッチレベル・マルチラベル分類法に基づく。
本研究では, 単一ラベルと複数ラベルの分類タスクに対して, 特に限られた訓練データのシナリオ下での手法の性能を評価する。
方法論は2つの段階に展開する。
当初、コントラスト学習アプローチを用いてエンコーダとプロジェクションネットワークのトレーニングに重点を置いている。
このステップは、エンコーダの非競合データ内のパターンを識別する能力を高めるために不可欠である。
次に、事前学習したエンコーダを用いて、2つの異なる予測器のトレーニングを指導する。
4つの公開データセットの実証結果から,本手法で訓練した予測器は,完全教師付き手法で訓練した予測器よりも優れた性能を示した。
特に、トレーニングデータの量を50\%$に減らしても、パフォーマンスは維持される。
この利点は両方のタスクで一貫しています。
この手法の有効性は、その合理化されたアーキテクチャに由来する。
この設計では、予測器とともにエンコーダを再訓練することができる。
その結果、エンコーダは分類器によって識別される特徴に適応しやすくなり、全体的な分類性能が向上する。
定性的な分析は、クラス間の分離と位置に基づく特徴の特定を可能にする表現を提供する、対照的な学習ベースのエンコーダの能力を明らかにする。
この観察は、データ内の暗黙の空間情報を明らかにする方法の可能性を示している。
関連論文リスト
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approach to semi-supervised learning は教師-学生の枠組みを採用する。
我々は、事前学習した動き予測モデルを活用し、擬似ラベル付きデータに基づいて物体軌跡を生成する。
提案手法は2つの異なる方法で擬似ラベル品質を向上する。
論文 参考訳(メタデータ) (2024-09-17T05:35:00Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
本稿では,ラベルの少ない新しい学習環境である,画像分類のための1ビット監督について述べる。
多段階学習パラダイムを提案し、負ラベル抑圧を半教師付き半教師付き学習アルゴリズムに組み込む。
複数のベンチマークにおいて、提案手法の学習効率は、フルビットの半教師付き監視手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-26T07:39:00Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
低リソーステキスト分類のための新しい説明可能なアクティブラーニングフレームワーク(XAL)を提案する。
XALは分類器に対して、推論を正当化し、合理的な説明ができないラベルのないデータを掘り下げることを推奨している。
6つのデータセットの実験では、XALは9つの強いベースラインに対して一貫した改善を達成している。
論文 参考訳(メタデータ) (2023-10-09T08:07:04Z) - Improving Time Series Encoding with Noise-Aware Self-Supervised Learning and an Efficient Encoder [15.39384259348351]
本稿では,自然時系列におけるノイズ発生信号の存在を考慮し,一貫した表現学習を促進する革新的な学習戦略を提案する。
また,インセプションブロック内に拡張畳み込みを組み込んだエンコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-11T04:00:11Z) - Deepfake Detection via Joint Unsupervised Reconstruction and Supervised
Classification [25.84902508816679]
本稿では,再建作業と分類作業を同時に行うディープフェイク検出手法を提案する。
この方法は、あるタスクによって学習された情報を他のタスクと共有する。
提案手法は,一般的に使用されている3つのデータセットに対して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-11-24T05:44:26Z) - Self-Training: A Survey [5.772546394254112]
半教師付きアルゴリズムは、ラベル付き観測の小さなセットとラベルなし観測の大きなセットから予測関数を学習することを目的としている。
近年,自己学習手法が注目されていることは確かである。
本稿では,バイナリクラスとマルチクラス分類のための自己学習手法と,その変種と関連する2つのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-24T11:40:44Z) - Label, Verify, Correct: A Simple Few Shot Object Detection Method [93.84801062680786]
トレーニングセットから高品質な擬似アノテーションを抽出するための簡単な擬似ラベリング手法を提案する。
擬似ラベリングプロセスの精度を向上させるための2つの新しい手法を提案する。
提案手法は,既存手法と比較して,最先端ないし第2の性能を実現する。
論文 参考訳(メタデータ) (2021-12-10T18:59:06Z) - Semi-supervised Long-tailed Recognition using Alternate Sampling [95.93760490301395]
ロングテール認識の主な課題は、データ分布の不均衡とテールクラスにおけるサンプル不足である。
半教師付き長尾認識という新しい認識設定を提案する。
2つのデータセットで、他の競合方法よりも大幅な精度向上を実証します。
論文 参考訳(メタデータ) (2021-05-01T00:43:38Z) - Self-supervised driven consistency training for annotation efficient
histopathology image analysis [13.005873872821066]
大きなラベル付きデータセットでニューラルネットワークをトレーニングすることは、計算病理学において依然として支配的なパラダイムである。
本研究では,非教師付き表現学習のための強力な監視信号を学ぶために,ヒストロジ全体スライディング画像の背景となる多段階的文脈的手がかりを利用する自己教師付きプレテキストタスクを提案する。
また,タスク固有の未ラベルデータとの予測整合性に基づいて,事前学習した表現を下流タスクに効果的に転送することを学ぶ教師による半教師付き一貫性パラダイムを提案する。
論文 参考訳(メタデータ) (2021-02-07T19:46:21Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
我々は m 個の U 集合を $mge2$ で二進分類する新しい手法を提案する。
我々のキーとなる考え方は、サロゲート集合分類(SSC)と呼ばれる補助的分類タスクを考えることである。
論文 参考訳(メタデータ) (2021-02-01T07:36:38Z) - Semi-Supervised Semantic Segmentation with Cross-Consistency Training [8.894935073145252]
セマンティックセグメンテーションのための新しいクロス一貫性に基づく半教師付きアプローチを提案する。
提案手法は,いくつかのデータセットにおける最先端結果を実現する。
論文 参考訳(メタデータ) (2020-03-19T20:10:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。