論文の概要: LucidGrasp: Robotic Framework for Autonomous Manipulation of Laboratory Equipment with Different Degrees of Transparency via 6D Pose Estimation
- arxiv url: http://arxiv.org/abs/2410.07801v3
- Date: Thu, 31 Oct 2024 18:06:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 14:45:01.752018
- Title: LucidGrasp: Robotic Framework for Autonomous Manipulation of Laboratory Equipment with Different Degrees of Transparency via 6D Pose Estimation
- Title(参考訳): LucidGrasp:6次元空間推定による透明度が異なる実験装置の自動操作のためのロボットフレームワーク
- Authors: Maria Makarova, Daria Trinitatova, Qian Liu, Dzmitry Tsetserukou,
- Abstract要約: この作業には、液体で満たされた物体を操作するための自律モードを備えたロボットフレームワークの開発が含まれる。
提案するロボットフレームワークは、非自明な操作タスクを実行する問題を解くことができるため、実験室の自動化に応用できる。
- 参考スコア(独自算出の注目度): 8.961549735358213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many modern robotic systems operate autonomously, however they often lack the ability to accurately analyze the environment and adapt to changing external conditions, while teleoperation systems often require special operator skills. In the field of laboratory automation, the number of automated processes is growing, however such systems are usually developed to perform specific tasks. In addition, many of the objects used in this field are transparent, making it difficult to analyze them using visual channels. The contributions of this work include the development of a robotic framework with autonomous mode for manipulating liquid-filled objects with different degrees of transparency in complex pose combinations. The conducted experiments demonstrated the robustness of the designed visual perception system to accurately estimate object poses for autonomous manipulation, and confirmed the performance of the algorithms in dexterous operations such as liquid dispensing. The proposed robotic framework can be applied for laboratory automation, since it allows solving the problem of performing non-trivial manipulation tasks with the analysis of object poses of varying degrees of transparency and liquid levels, requiring high accuracy and repeatability.
- Abstract(参考訳): 現代のロボットシステムの多くは自律的に動作するが、環境を正確に分析し、外部条件に適応する能力が欠けていることが多い。
実験室自動化の分野では、自動化プロセスの数が増加しているが、通常は特定のタスクを実行するために開発されている。
さらに、この分野で使用される多くのオブジェクトは透明であり、視覚チャネルを用いてそれらを解析することは困難である。
この研究の貢献は、複雑なポーズの組み合わせで透明度が異なる液体で満たされた物体を操作するための自律モードのロボットフレームワークの開発である。
実験により, 自律的操作のための物体の姿勢を正確に推定する設計された視覚知覚システムの頑健さを実証し, 液体の排出などの厳密な操作におけるアルゴリズムの性能を確認した。
提案するロボット・フレームワークは、透明度や液体レベルの異なる物体のポーズを解析することで、非自明な操作作業を行う問題を解くことができ、精度と再現性が要求されるため、実験室の自動化に応用できる。
関連論文リスト
- CtRNet-X: Camera-to-Robot Pose Estimation in Real-world Conditions Using a Single Camera [18.971816395021488]
マーカーレスポーズ推定手法は、カメラとロボットのキャリブレーションに時間を要する物理的な設定を不要にしている。
部分的に見えるロボットマニピュレータでロボットのポーズを推定できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-16T16:22:43Z) - Bridging Language, Vision and Action: Multimodal VAEs in Robotic Manipulation Tasks [0.0]
本研究では,ロボット操作分野における教師なし視覚-言語-アクションマッピングに着目した。
本研究では,シミュレータにおけるモデルの性能を最大55%向上させるモデル不変学習法を提案する。
我々の研究は、ロボット運動軌跡の教師なし学習に現在のマルチモーダルVAEを使用することの潜在的な利点と限界にも光を当てている。
論文 参考訳(メタデータ) (2024-04-02T13:25:16Z) - Robotic Handling of Compliant Food Objects by Robust Learning from
Demonstration [79.76009817889397]
本稿では,食品に適合する物体をロボットで把握する上で,実証からの学習(LfD)に基づく頑健な学習方針を提案する。
教師の意図した方針を推定し,無矛盾な実演を自動的に除去するLfD学習ポリシーを提案する。
提案されたアプローチは、前述の業界セクターで幅広い応用が期待できる。
論文 参考訳(メタデータ) (2023-09-22T13:30:26Z) - RObotic MAnipulation Network (ROMAN) $\unicode{x2013}$ Hybrid
Hierarchical Learning for Solving Complex Sequential Tasks [70.69063219750952]
ロボットマニピュレーションネットワーク(ROMAN)のハイブリッド階層型学習フレームワークを提案する。
ROMANは、行動クローニング、模倣学習、強化学習を統合することで、タスクの汎用性と堅牢な障害回復を実現する。
実験結果から,これらの専門的な操作専門家の組織化と活性化により,ROMANは高度な操作タスクの長いシーケンスを達成するための適切なシーケンシャルなアクティベーションを生成することがわかった。
論文 参考訳(メタデータ) (2023-06-30T20:35:22Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
本稿では,ユーザが新しいタスクを定義するための"プログラミング不要"なアプローチを提供する,視覚に基づくデクスタラスな操作システムについて述べる。
本システムには,最終タスクと中間タスクを画像例で定義するためのフレームワークが組み込まれている。
実世界における多段階物体操作の4指ロボットハンドラーによる実験結果
論文 参考訳(メタデータ) (2022-12-19T22:50:40Z) - Autonomous Intraluminal Navigation of a Soft Robot using
Deep-Learning-based Visual Servoing [13.268863900187025]
そこで本研究では,3Dプリント型内視鏡ソフトロボットによる光内ナビゲーションのためのシナジーソリューションを提案する。
畳み込みニューラルネットワーク(CNN)に基づくビジュアルサーボは、自律的なナビゲーションタスクを達成するために使用される。
提案するロボットは、異なる経路構成の解剖学的ファントムで検証される。
論文 参考訳(メタデータ) (2022-07-01T13:17:45Z) - Vision-driven Compliant Manipulation for Reliable, High-Precision
Assembly Tasks [26.445959214209505]
本稿では,最先端の物体追跡と受動適応型機械ハードウェアを組み合わせることで,高精度な操作作業を実現することを実証する。
提案手法は,作業空間内の物体の相対的な6次元ポーズを追跡することにより,視覚を通してループを閉じる。
論文 参考訳(メタデータ) (2021-06-26T17:54:16Z) - Ensemble learning and iterative training (ELIT) machine learning:
applications towards uncertainty quantification and automated experiment in
atom-resolved microscopy [0.0]
深層学習は、画像の分野をまたいだ迅速な特徴抽出の技法として登場した。
本稿では,原子分解電子顕微鏡における特徴抽出における深層学習の応用について検討する。
このアプローチは、深層学習解析に不確実性をもたらし、また、画像条件の変化によるネットワークの再訓練が人間のオペレータやアンサンブルからのネットワークの選択に代えて、分散のずれを補うための自動実験的検出を可能にする。
論文 参考訳(メタデータ) (2021-01-21T05:29:26Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
本稿では,開発とベンチマークを統合した再現性ロボット研究の新しい概念について述べる。
このセットアップの中心的なコンポーネントの1つはDuckietown Autolabであり、これは比較的低コストで再現可能な標準化されたセットアップである。
本研究では,インフラを用いて実施した実験の再現性を解析し,ロボットのハードウェアや遠隔実験室間でのばらつきが低いことを示す。
論文 参考訳(メタデータ) (2020-09-09T15:31:29Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIENは現実的で物理に富んだシミュレートされた環境であり、音声オブジェクトのための大規模なセットをホストしている。
部品検出と動作特性認識のための最先端の視覚アルゴリズムの評価を行い,ロボットインタラクションタスクの実証を行った。
論文 参考訳(メタデータ) (2020-03-19T00:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。