論文の概要: MGMD-GAN: Generalization Improvement of Generative Adversarial Networks with Multiple Generator Multiple Discriminator Framework Against Membership Inference Attacks
- arxiv url: http://arxiv.org/abs/2410.07803v1
- Date: Thu, 10 Oct 2024 10:43:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 14:46:14.554727
- Title: MGMD-GAN: Generalization Improvement of Generative Adversarial Networks with Multiple Generator Multiple Discriminator Framework Against Membership Inference Attacks
- Title(参考訳): MGMD-GAN:マルチジェネレータ・マルチディスクリミネータによるジェネレーション・ディバイザ・ネットワークの汎用化
- Authors: Nirob Arefin,
- Abstract要約: 我々は、複数のジェネレータと複数の識別器(MGMD-GAN)で構成される新しいGANフレームワークを提案する。
本稿では,複数のジェネレータと複数識別器(MGMD-GAN)で構成される新しいGANフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative Adversarial Networks (GAN) are among the widely used Generative models in various applications. However, the original GAN architecture may memorize the distribution of the training data and, therefore, poses a threat to Membership Inference Attacks. In this work, we propose a new GAN framework that consists of Multiple Generators and Multiple Discriminators (MGMD-GAN). Disjoint partitions of the training data are used to train this model and it learns the mixture distribution of all the training data partitions. In this way, our proposed model reduces the generalization gap which makes our MGMD-GAN less vulnerable to Membership Inference Attacks. We provide an experimental analysis of our model and also a comparison with other GAN frameworks.
- Abstract(参考訳): GAN(Generative Adversarial Networks)は、様々なアプリケーションで広く使われているジェネレーティブモデルの一つである。
しかし、元のGANアーキテクチャはトレーニングデータの分布を記憶し、したがってメンバーシップ推論攻撃に脅威をもたらす可能性がある。
本稿では,複数のジェネレータと複数の識別器(MGMD-GAN)で構成される新しいGANフレームワークを提案する。
トレーニングデータの分離パーティションは、このモデルをトレーニングするために使用され、トレーニングデータパーティションの混合分布を学習する。
このようにして、提案したモデルは、MGMD-GANがメンバーシップ推論攻撃に弱いように、一般化ギャップを小さくする。
我々は、モデルの実験的な分析と、他のGANフレームワークとの比較を提供する。
関連論文リスト
- DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
拡散生成モデルはより広い範囲の解を考えることができ、学習パラメータによるより強力な一般化を示す。
拡散生成モデルの本質的な分布学習を利用して高品質な解を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T07:56:21Z) - Task Groupings Regularization: Data-Free Meta-Learning with Heterogeneous Pre-trained Models [83.02797560769285]
Data-Free Meta-Learning (DFML)は、トレーニング済みモデルのコレクションから、元のデータにアクセスせずに知識を抽出することを目的としている。
現在の手法は、事前訓練されたモデル間の不均一性を見落とし、タスクの衝突による性能低下につながることが多い。
論文 参考訳(メタデータ) (2024-05-26T13:11:55Z) - Generative Adversarial Reduced Order Modelling [0.0]
本稿ではGAROMについて述べる。GAN(Generative Adversarial Network)に基づくリダクション・オーダー・モデリング(ROM)の新しいアプローチである。
GANはデータ配布を学習し、よりリアルなデータを生成する可能性がある。
本研究では,パラメータ微分方程式の解を学習可能なデータ駆動生成逆数モデルを導入することにより,GANとROMの枠組みを組み合わせる。
論文 参考訳(メタデータ) (2023-05-25T09:23:33Z) - Generative Models with Information-Theoretic Protection Against
Membership Inference Attacks [6.840474688871695]
GAN(Generative Adversarial Networks)のような深層生成モデルは、多様な高忠実度データサンプルを合成する。
GANは、訓練されたデータから個人情報を開示し、敵の攻撃を受けやすい可能性がある。
本稿では,生成モデルがトレーニングデータに過度に適合しないようにし,一般化性を奨励する情報理論的動機付け正規化項を提案する。
論文 参考訳(メタデータ) (2022-05-31T19:29:55Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
エッジでの分散モデルトレーニングのために、フェデレートラーニングが最近提案されている。
本稿では,連合学習フレームワークにおける集約戦略を評価するために,完全な数学的収束解析を提案する。
損失の値に応じてクライアントのコントリビューションを差別化することで、モデルアーキテクチャを変更できる新しい集約アルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-05-22T16:37:53Z) - on the effectiveness of generative adversarial network on anomaly
detection [1.6244541005112747]
GANは、実際のトレーニング分布を特定するために、これらのモデルのリッチなコンテキスト情報に依存している。
本稿では,自動エンコーダとGANを組み合わせた新しい教師なしモデルを提案する。
識別器の内部表現と生成器の視覚表現の線形結合と、オートエンコーダの符号化表現とを組み合わせて、提案した異常スコアを定義する。
論文 参考訳(メタデータ) (2021-12-31T16:35:47Z) - On the Fairness of Generative Adversarial Networks (GANs) [1.061960673667643]
GAN(Generative adversarial Network)は、近年のAIの最大の進歩の1つです。
本稿では,GANモデルの公平性に関する問題を分析し,強調する。
論文 参考訳(メタデータ) (2021-03-01T12:25:01Z) - Training Generative Adversarial Networks in One Stage [58.983325666852856]
本稿では,1段階のみに効率よくGANを訓練できる汎用的なトレーニング手法を提案する。
提案手法は,データフリーな知識蒸留など,他の逆学習シナリオにも容易に適用可能であることを示す。
論文 参考訳(メタデータ) (2021-02-28T09:03:39Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
GANによる制御可能な世代は依然として困難な研究課題である。
本稿では,自己学習を通じてジェネレータを制御する潜伏符号の分布を学習するための教師なしフレームワークを提案する。
我々のフレームワークは、変分オートエンコーダのような他の変種と比較して、より良い絡み合いを示す。
論文 参考訳(メタデータ) (2020-07-17T21:50:35Z) - Generalized Adversarially Learned Inference [42.40405470084505]
我々は、画像生成器とエンコーダを逆向きにトレーニングし、画像と潜時ベクトル対の2つの結合分布を一致させることにより、GAN内の潜時変数を推定する方法を開発した。
我々は、望まれるソリューションに関する事前または学習知識に基づいて、再構築、自己監督、その他の形式の監督に関する複数のフィードバック層を組み込んだ。
論文 参考訳(メタデータ) (2020-06-15T02:18:13Z) - Brainstorming Generative Adversarial Networks (BGANs): Towards
Multi-Agent Generative Models with Distributed Private Datasets [70.62568022925971]
生成的敵ネットワーク(GAN)は、データ空間を適切に表現する大規模なデータセットによって供給されなければならない。
多くのシナリオでは、利用可能なデータセットは制限され、複数のエージェントに分散する可能性がある。
本稿では,BGAN(Breepstorming GAN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-02-02T02:58:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。