論文の概要: A Sensor Agnostic Domain Generalization Framework for Leveraging Geospatial Foundation Models: Enhancing Semantic Segmentation viaSynergistic Pseudo-Labeling and Generative Learning
- arxiv url: http://arxiv.org/abs/2505.01558v1
- Date: Fri, 02 May 2025 19:52:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.173289
- Title: A Sensor Agnostic Domain Generalization Framework for Leveraging Geospatial Foundation Models: Enhancing Semantic Segmentation viaSynergistic Pseudo-Labeling and Generative Learning
- Title(参考訳): 地理空間モデルを活用したセンサ非依存領域一般化フレームワーク:Synergistic Pseudo-Labelingと生成学習によるセマンティックセグメンテーションの強化
- Authors: Anan Yaghmour, Melba M. Crawford, Saurabh Prasad,
- Abstract要約: 高性能セグメンテーションモデルは、センサ、照明、地理のアノテーション不足と可変性によって挑戦されている。
本稿では,ソフトアライメント擬似ラベルとソース・ツー・ターゲット生成事前学習を組み合わせることで,新しい地理空間基盤モデルを活用するための領域一般化手法を提案する。
ハイパースペクトルおよびマルチスペクトルリモートセンシングデータセットを用いた実験により、適応性とセグメンテーションを向上させる方法の有効性が確認された。
- 参考スコア(独自算出の注目度): 5.299218284699214
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Remote sensing enables a wide range of critical applications such as land cover and land use mapping, crop yield prediction, and environmental monitoring. Advances in satellite technology have expanded remote sensing datasets, yet high-performance segmentation models remain dependent on extensive labeled data, challenged by annotation scarcity and variability across sensors, illumination, and geography. Domain adaptation offers a promising solution to improve model generalization. This paper introduces a domain generalization approach to leveraging emerging geospatial foundation models by combining soft-alignment pseudo-labeling with source-to-target generative pre-training. We further provide new mathematical insights into MAE-based generative learning for domain-invariant feature learning. Experiments with hyperspectral and multispectral remote sensing datasets confirm our method's effectiveness in enhancing adaptability and segmentation.
- Abstract(参考訳): リモートセンシングは、土地被覆や土地利用のマッピング、収穫量の予測、環境モニタリングなど、幅広い重要な応用を可能にする。
衛星技術の進歩は、リモートセンシングデータセットを拡張したが、高性能セグメンテーションモデルは、センサー、照明、地理のアノテーションの不足と変動によって挑戦された、広範なラベル付きデータに依存している。
ドメイン適応はモデル一般化を改善するための有望なソリューションを提供する。
本稿では,ソフトアライメント擬似ラベルとソース・ツー・ターゲット生成事前学習を組み合わせることで,新しい地理空間基盤モデルを活用するための領域一般化手法を提案する。
さらに、領域不変な特徴学習のためのMAEに基づく生成学習に関する新しい数学的洞察を提供する。
ハイパースペクトルおよびマルチスペクトルリモートセンシングデータセットを用いた実験により、適応性とセグメンテーションを向上させる方法の有効性が確認された。
関連論文リスト
- SegDesicNet: Lightweight Semantic Segmentation in Remote Sensing with Geo-Coordinate Embeddings for Domain Adaptation [0.5461938536945723]
リモートセマンティックセマンティックセグメンテーションのための新しい教師なしドメイン適応手法を提案する。
提案するSegDesicNetモジュールは、単位球上に投影された座標のGRID位置符号化を遅らせ、ドメイン損失を得る。
我々のアルゴリズムは,人工ニューラルネットワークと物理世界の人間の理解とのモデリング格差を減らそうとしている。
論文 参考訳(メタデータ) (2025-03-11T11:01:18Z) - TrajLearn: Trajectory Prediction Learning using Deep Generative Models [4.097342535693401]
軌道予測は、現在位置と過去の動きデータを用いて、ある物体の将来の進路を推定することを目的としている。
これらの課題に対処するために,軌道予測の新しいモデルであるTrajLearnを紹介する。
TrajLearnは、複数の潜在的パスを探索するためにカスタマイズされたビーム検索を統合することで、次の$k$ステップを予測する。
論文 参考訳(メタデータ) (2024-12-30T23:38:52Z) - Object Style Diffusion for Generalized Object Detection in Urban Scene [69.04189353993907]
本稿では,GoDiffという新しい単一ドメインオブジェクト検出一般化手法を提案する。
擬似ターゲットドメインデータとソースドメインデータを統合することで、トレーニングデータセットを多様化する。
実験により,本手法は既存の検出器の一般化能力を高めるだけでなく,他の単一領域一般化手法のプラグ・アンド・プレイ拡張として機能することが示された。
論文 参考訳(メタデータ) (2024-12-18T13:03:00Z) - Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
クロスシーン画像分類は, 異なる分布領域のアノテート領域に, 地中物質の事前の知識を伝達することを目的としている。
既存のアプローチでは、未確認のターゲットドメインへの単一ソースドメインの一般化に重点を置いている。
マルチソースリモートセンシングデータの均一性と不均一性特性に基づく,新しいマルチソース協調型ドメイン一般化フレームワーク(MS-CDG)を提案する。
論文 参考訳(メタデータ) (2024-12-05T06:15:08Z) - Domain Expansion and Boundary Growth for Open-Set Single-Source Domain Generalization [70.02187124865627]
オープンソースの単一ソースドメインの一般化は、単一のソースドメインを使用して、未知のターゲットドメインに一般化可能な堅牢なモデルを学ぶことを目的としている。
本稿では,領域拡大と境界成長に基づく新しい学習手法を提案する。
提案手法は,いくつかの領域横断画像分類データセットにおいて,大幅な改善と最先端性能を実現することができる。
論文 参考訳(メタデータ) (2024-11-05T09:08:46Z) - StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization [85.18995948334592]
単一のドメインの一般化(単一DG)は、単一のトレーニングドメインからのみ見えないドメインに一般化可能な堅牢なモデルを学ぶことを目的としている。
最先端のアプローチは、主に新しいデータを合成するために、敵対的な摂動やスタイルの強化といったデータ拡張に頼っている。
データ拡張の過程で、ソースと擬似ドメインのアライメントを明示的に考慮したemphStyDeStyを提案する。
論文 参考訳(メタデータ) (2024-06-01T02:41:34Z) - Adaptive Global-Local Representation Learning and Selection for
Cross-Domain Facial Expression Recognition [54.334773598942775]
ドメインシフトは、クロスドメイン顔表情認識(CD-FER)において重要な課題となる
適応的グローバルローカル表現学習・選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-20T02:21:41Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。