論文の概要: Enhancing Language Model Reasoning via Weighted Reasoning in Self-Consistency
- arxiv url: http://arxiv.org/abs/2410.07839v1
- Date: Thu, 10 Oct 2024 11:58:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:25:50.516558
- Title: Enhancing Language Model Reasoning via Weighted Reasoning in Self-Consistency
- Title(参考訳): 自己整合性を考慮した重み付き推論による言語モデル推論の強化
- Authors: Tim Knappe, Ryan Li, Ayush Chauhan, Kaylee Chhua, Kevin Zhu, Sean O'Brien,
- Abstract要約: Wang氏らの自己整合性フレームワークは、多数決を受ける前に複数の論理をサンプリングすることで、様々なクローズドな回答の推論タスクにおけるモデルパフォーマンスが確実に向上することを示している。
我々の研究は、多数決を下す前に、最終的な決定に加えて、これらの理性の両方の理性経路を取り入れ、分析することによって、このアプローチを強化します。
- 参考スコア(独自算出の注目度): 5.110108181663884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While large language models (LLMs) have rapidly improved their performance on a broad number of tasks, they still often fall short on reasoning tasks. As LLMs become more integrated in diverse real-world tasks, advancing their reasoning capabilities is crucial to their effectiveness in nuanced, complex problems. Wang et al's self-consistency framework reveals that sampling multiple rationales before taking a majority vote reliably improves model performance across various closed-answer reasoning tasks. Standard methods based on this framework aggregate the final decisions of these rationales but fail to utilize the detailed step-by-step reasoning paths applied by these paths. Our work enhances this approach by incorporating and analyzing both the reasoning paths of these rationales in addition to their final decisions before taking a majority vote. These methods not only improve the reliability of reasoning paths but also cause more robust performance on complex reasoning tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は幅広いタスクのパフォーマンスを急速に向上させているが、推論タスクでは不足することが多い。
LLMがより多様な現実世界のタスクに統合されるにつれて、それらの推論能力の進歩は、曖昧で複雑な問題におけるそれらの効果に不可欠である。
Wang氏らの自己整合性フレームワークは、多数決を受ける前に複数の論理をサンプリングすることで、様々なクローズドな回答の推論タスクにおけるモデルパフォーマンスが確実に向上することを示している。
このフレームワークに基づく標準的な手法は、これらの論理学の最終決定を集約するが、これらの経路によって適用される詳細なステップバイステップの推論パスを利用できない。
我々の研究は、多数決を下す前に、最終的な決定に加えて、これらの理性の両方の理性経路を取り入れ、分析することによって、このアプローチを強化します。
これらの手法は推論パスの信頼性を向上させるだけでなく、複雑な推論タスクにおいてより堅牢なパフォーマンスをもたらす。
関連論文リスト
- Short-Path Prompting in LLMs: Analyzing Reasoning Instability and Solutions for Robust Performance [33.16322104912836]
大規模言語モデル (LLM) の推論は、主にチェーン・オブ・シント (CoT) のアプローチによるものである。
LLMは、推論に関連する質問に応答するときに、長くて詳細なCoT経路を提供するように、命令調整される。
人間は自然に認知的な惨事であり、言語モデルにかなり短い反応を与えるよう促す。
論文 参考訳(メタデータ) (2025-04-13T14:12:14Z) - Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
推論は人間の知性の中心であり、多様なタスクにまたがる構造化された問題解決を可能にする。
大規模言語モデル(LLM)の最近の進歩は、算術、常識、記号領域における推論能力を大幅に向上させてきた。
本稿では,テキストおよびマルチモーダルLLMにおける推論手法の簡潔かつ洞察に富んだ概要について述べる。
論文 参考訳(メタデータ) (2025-04-04T04:04:56Z) - Your Language Model May Think Too Rigidly: Achieving Reasoning Consistency with Symmetry-Enhanced Training [66.48331530995786]
我々は、文脈から有用な情報を抽出する能力を向上させるデータ中心のアプローチであるsyMmetry-ENhanceD (MEND) Data Augmentationを提案する。
推論連鎖の増大を強調する既存の手法とは異なり,本手法は知識抽出段階におけるモデルロバスト性を向上させる。
論理的および算術的推論タスクの実験は、MENDが様々なクエリのバリエーションで推論性能を向上させることを示している。
論文 参考訳(メタデータ) (2025-02-25T03:03:35Z) - Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning [40.069109287947875]
我々はフォレスト・オブ・サート(FoT)と呼ばれる新しい推論フレームワークを提案する。
FoTは複数の推論木を統合し、複雑な論理問題を解くために集合的な意思決定を活用する。
FoTは、最も関連性の高い推論パスを選択するためにスパースアクティベーション戦略を採用し、効率と精度の両方を改善している。
論文 参考訳(メタデータ) (2024-12-12T09:01:18Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - CSCE: Boosting LLM Reasoning by Simultaneous Enhancing of Casual Significance and Consistency [12.961692839965115]
チェーン・オブ・シンキング(CoT)のような連鎖型推論手法は、大規模言語モデル(LLM)の推論タスクの解決において、その役割を担っている。
本稿では、因果的重要性と一貫性を同時に考慮する非チェーン型推論フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-20T08:28:23Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
最近の研究は、複数の推論チェーンをサンプリングし、応答周波数に基づいてアンサンブルすることで、Large Language Models(LLMs)の推論性能を向上させる。
このアプローチは、正しい答えが少数派である場合に失敗する。
階層的推論集約フレームワークAoRを導入し、推論連鎖の評価に基づいて回答を選択する。
論文 参考訳(メタデータ) (2024-05-21T17:12:19Z) - Beyond Accuracy: Evaluating the Reasoning Behavior of Large Language Models -- A Survey [25.732397636695882]
大規模言語モデル(LLM)は、最近、推論を含むタスクで顕著なパフォーマンスを示している。
これらの成功にもかかわらず、LLMの推論能力の深さは未だ不明である。
論文 参考訳(メタデータ) (2024-04-02T11:46:31Z) - Learning From Correctness Without Prompting Makes LLM Efficient Reasoner [30.203952806009717]
大規模言語モデル(LLM)は様々なタスクで優れた性能を示してきたが、幻覚、不誠実な推論、有害な内容などの制限がまだ残っている。
人間のフィードバックや外部ツール,手工芸のプロンプトを不要にする,本質的な自己修正推論フレームワークをLLMに導入する。
論文 参考訳(メタデータ) (2024-03-28T02:12:49Z) - Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing [61.98556945939045]
収集された軌道上でのDPO(Direct Preference Optimization)を通して計画に基づく推論を学習するフレームワークを提案する。
論理的推論ベンチマークの挑戦的な結果から,学習フレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-02-01T15:18:33Z) - A Principled Framework for Knowledge-enhanced Large Language Model [58.1536118111993]
大規模言語モデル(LLM)は汎用性があるが、深い信頼性のある推論を必要とするタスクに悩まされることが多い。
本稿では、知識を効果的に固定し、閉ループ推論プロセスを用いるLLMを作成するための厳密な設計のフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-18T18:10:02Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
ヒューリスティック分析推論(HAR)戦略は、モデル決定のための合理化のコヒーレンスを大幅に改善する。
以上の結果から, PLM推論の一貫性と信頼性を効果的に向上できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-24T19:46:04Z) - Question Decomposition Improves the Faithfulness of Model-Generated
Reasoning [23.34325378824462]
大規模言語モデル(LLM)は、その振る舞いの正しさと安全性を検証するのが困難である。
一つのアプローチは、LLMが質問に答えるときにステップバイステップの推論を生成することによって、彼らの推論を外部化するように促すことである。
このアプローチは、モデルの実的推論を忠実に反映する記述された推論に依存しており、必ずしもそうではない。
分解に基づく手法は、時にはCoTの手法に近づき、質問応答タスクにおいて高い性能を達成する。
論文 参考訳(メタデータ) (2023-07-17T00:54:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。