論文の概要: System 2 Reasoning via Generality and Adaptation
- arxiv url: http://arxiv.org/abs/2410.07866v3
- Date: Mon, 09 Dec 2024 12:14:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:49:35.818178
- Title: System 2 Reasoning via Generality and Adaptation
- Title(参考訳): システム2 一般性と適応による推論
- Authors: Sejin Kim, Sundong Kim,
- Abstract要約: 本稿では,システム2推論の高度化における既存手法の限界について考察する。
これらのギャップに対処するための4つの重要な研究指針を提案する。
我々は,AI(Artificial General Intelligence, AGI)に必要な推論能力に,計算モデルを近づけることで,一般化と適応の能力の向上を目指している。
- 参考スコア(独自算出の注目度): 5.806160172544203
- License:
- Abstract: While significant progress has been made in task-specific applications, current models struggle with deep reasoning, generality, and adaptation -- key components of System 2 reasoning that are crucial for achieving Artificial General Intelligence (AGI). Despite the promise of approaches such as program synthesis, language models, and transformers, these methods often fail to generalize beyond their training data and to adapt to novel tasks, limiting their ability to perform human-like reasoning. This paper explores the limitations of existing approaches in achieving advanced System 2 reasoning and highlights the importance of generality and adaptation for AGI. Moreover, we propose four key research directions to address these gaps: (1) learning human intentions from action sequences, (2) combining symbolic and neural models, (3) meta-learning for unfamiliar environments, and (4) reinforcement learning to reason multi-step. Through these directions, we aim to advance the ability to generalize and adapt, bringing computational models closer to the reasoning capabilities required for AGI.
- Abstract(参考訳): タスク固有のアプリケーションでは大きな進歩があったが、現在のモデルは深い推論、一般性、適応に苦慮している。
プログラム合成、言語モデル、トランスフォーマーといったアプローチの約束にもかかわらず、これらの手法はトレーニングデータを超えて一般化せず、新しいタスクに適応せず、人間のような推論を行う能力を制限する。
本稿では,システム2推論の高度化における既存手法の限界について考察し,AGIの一般化と適応の重要性を強調した。
さらに,(1)行動系列からの人間の意図の学習,(2)記号モデルとニューラルモデルの組み合わせ,(3)不慣れな環境におけるメタラーニング,(4)多段階推論のための強化学習の4つの主要な研究方向を提案する。
これらの方向性を通じて、AGIに必要な推論能力に計算モデルを近づけることで、一般化と適応の能力を向上させることを目指している。
関連論文リスト
- Learning the Generalizable Manipulation Skills on Soft-body Tasks via Guided Self-attention Behavior Cloning Policy [9.345203561496552]
GP2E行動クローニングポリシーは、ソフトボディタスクから汎用的な操作スキルを学ぶためのエージェントを誘導することができる。
本研究は,Embodied AIモデルの一般化能力を向上する手法の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2024-10-08T07:31:10Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
符号化の対象はデータの圧縮と再構成、インテリジェンスである。
最近の傾向は、これらの2つの分野の潜在的均一性を示している。
本稿では,カテゴリ理論の観点から,インテリジェンスのためのコーディングの新たな問題を提案する。
論文 参考訳(メタデータ) (2024-07-01T07:05:44Z) - Human-like Category Learning by Injecting Ecological Priors from Large Language Models into Neural Networks [8.213829427624407]
我々は、生態学的に合理的なメタ学習推論(ERMI)と呼ばれるモデルのクラスを開発する。
ERMIは2つの異なる実験で、人間のデータを他の7つの認知モデルより定量的に説明します。
ERMIの生態学的に有効な事前評価により,OpenML-CC18分類ベンチマークで最先端のパフォーマンスを達成できることが示されている。
論文 参考訳(メタデータ) (2024-02-02T16:32:04Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
本稿では,人工知能(AGI)モデルとその前駆体の性能と動作を分類する枠組みを提案する。
このフレームワークは、AGIのパフォーマンス、一般性、自律性のレベルを導入し、モデルを比較し、リスクを評価し、AGIへの道筋に沿って進捗を測定する共通の言語を提供する。
論文 参考訳(メタデータ) (2023-11-04T17:44:58Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - AR-LSAT: Investigating Analytical Reasoning of Text [57.1542673852013]
テキストの分析的推論の課題を研究し、1991年から2016年までのロースクール入学試験からの質問からなる新しいデータセットを紹介します。
我々は,この課題をうまくこなすために必要な知識理解と推論能力を分析する。
論文 参考訳(メタデータ) (2021-04-14T02:53:32Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
本稿では,データ駆動型アプローチと知識駆動型アプローチの強みを組み合わせたフレームワークとして,ハイブリッドAI手法を提案する。
具体的には、知識ベースを用いて深層ニューラルネットワークの学習過程を導く方法として、ニューロシンボリズムの概念を継承する。
論文 参考訳(メタデータ) (2020-03-09T15:04:07Z) - Neuro-evolutionary Frameworks for Generalized Learning Agents [1.2691047660244335]
近年のディープラーニングと深層強化学習の成功は、最先端の人工知能技術としての地位を確固たるものにしている。
これらのアプローチの長年の欠点は、そのようなシステムが設計され、デプロイされる方法を再考する必要性を示している。
このような神経進化の枠組みから期待される改善と関連する課題について論じる。
論文 参考訳(メタデータ) (2020-02-04T02:11:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。